Assignment 13

1. Let $f \in \mathrm{C}([0,1], \mathbb{R})$ and define the Bernstein polynomials by

$$
p_{n}(f, x)=\sum_{k=0}^{n}\binom{n}{k} f\left(\frac{k}{n}\right) x^{k}(1-x)^{n-k}, x \in[0,1], n \in \mathbb{N}
$$

Show that

$$
\left\|p_{n}(f, \cdot)-f\right\|_{\infty} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

[Hint: Use the identity

$$
\sum_{k=0}^{n}(k-n x)^{2}\binom{n}{k} x^{k}(1-x)^{n-k}=n x(1-x)
$$

and split the sum into two parts according to whether $\left|x-\frac{k}{n}\right| \leq \delta$ or $\left|x-\frac{k}{n}\right|>\delta>0$.]
2. Determine the radius of convergence of the following power series

$$
\sum_{n=0}^{\infty} \frac{\sqrt{n 2^{n}}}{(n+1)^{5}} x^{n}, \sum_{n=0}^{\infty}(-1)^{n} \frac{n!}{n^{n}} x^{n}
$$

3. Assume that the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n} \text { and } \sum_{n=0}^{\infty} b_{n} x^{n}
$$

have positive radii of convergence. Suppose that there exists a sequence $\left(y_{j}\right)_{j \in \mathbb{N}}$ with $y_{j} \rightarrow 0(j \rightarrow \infty)$ and $y_{j} \neq 0$ such that

$$
\sum_{n=0}^{\infty} a_{n} y_{j}^{n}=\sum_{n=0}^{\infty} b_{n} y_{j}^{n}
$$

Prove that $a_{n}=b_{n}, n \in \mathbb{N}$.
4. Assume $D \stackrel{o}{\subset} \mathbb{R}$ and let $f: D \rightarrow \mathbb{R}$ be analytic. Show that, for every $x_{0} \in D$, constants $M, r, \delta>0$ can be found such that

$$
\left|f^{(k)}(x)\right| \leq M k!r^{k}, x \in\left(x_{0}-\delta, x_{0}+\delta\right)
$$

5. You ask a question.

The Homework is due on Friday, February 21.

