Assignment 14

1. Let the function $f \in \mathrm{C}(\mathbb{R}, \mathbb{R})$ be given by

$$
f(x)= \begin{cases}1-|x|, & |x|<1 \\ 0, & |x| \geq 1\end{cases}
$$

Compute $f * f$ and $f * f * f$.
2. Show that $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \frac{1}{1+x^{2}}$ is analytic.
3. Let $f \in \mathrm{C}_{c}(\mathbb{R}, \mathbb{R})$ and $g \in \mathrm{C}^{1}(\mathbb{R}, \mathbb{R})$. Show that

$$
f * g \in \mathrm{C}^{1}(\mathbb{R}, \mathbb{R})
$$

4. For $f \in \mathrm{C}_{c}(\mathbb{R}, \mathbb{R})$ define its Fourier transform $\hat{f}: \mathbb{R} \rightarrow \mathbb{K}$ by

$$
\hat{f}(\xi)=\int_{-\infty}^{\infty} e^{-i x \xi} f(x) d x
$$

Show that \hat{f} is well-defined and analytic. Give an estimate for the radius of convergence of its power series expansion about $\xi=0$.
5. You ask a question.

