${\rm Math}205 {\rm c}$

Assignment 19

1. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

and compute its mixed second derivatives.

2. Denote $\mathbb{R}^n \setminus \{0\}$ by $\dot{\mathbb{R}}^n$. A function $f : \dot{\mathbb{R}}^n \to \mathbb{R}$ is called homogeneous of degree k if

$$f(tx) = t^k f(x), t > 0, x \in \dot{\mathbb{R}}^n.$$

Show that

$$\nabla f(x) \cdot x = k f(x)$$
 if f is differentiable.

3. Let $f \in C^1(D, \mathbb{R})$ for some convex $D \stackrel{o}{\subset} \mathbb{R}^n$ and $x, y \in D$. Show that there exists $\xi \in D$ such that

$$f(y) - f(x) = \nabla f(\xi) \cdot (y - x).$$

- 4. Show that the existence of all partial derivatives for $f : \mathbb{R}^n \to \mathbb{R}$ at a point $x \in \mathbb{R}^n$ does not imply its differentiability there.
- 5. You ask a question.

The Homework is due Friday, April 25.