Assignment 19

1. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

and compute its mixed second derivatives.
2. Denote $\mathbb{R}^{n} \backslash\{0\}$ by $\dot{\mathbb{R}}^{n}$. A function $f: \dot{\mathbb{R}}^{n} \rightarrow \mathbb{R}$ is called homogeneous of degree k if

$$
f(t x)=t^{k} f(x), t>0, x \in \dot{\mathbb{R}}^{n}
$$

Show that

$$
\nabla f(x) \cdot x=k f(x)
$$

if f is differentiable.
3. Let $f \in \mathrm{C}^{1}(D, \mathbb{R})$ for some convex $D \stackrel{o}{\subset} \mathbb{R}^{n}$ and $x, y \in D$. Show that there exists $\xi \in D$ such that

$$
f(y)-f(x)=\nabla f(\xi) \cdot(y-x)
$$

4. Show that the existence of all partial derivatives for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at a point $x \in \mathbb{R}^{n}$ does not imply its differentiability there.
5. You ask a question.
