Assignment 2

1. Let $(x_n)_{n\in\mathbb{N}}\in CS(\mathbb{Q})$ and consider the polynomial function defined through

$$p(x) = \sum_{j=1}^{m} p_j x^j, \ x \in \mathbb{Q},$$

with rational coefficients $p_j \in \mathbb{Q}$, j = 1, ..., m. Prove that the sequence $(p(x_n))_{n \in \mathbb{N}} \in CS(\mathbb{Q})$, too.

- 2. Describe the set $CS(\mathbb{N})$ and determine whether it is countable or not. [Hint: Prove first that the countable union of countable sets is countable.]
- 3. Prove that \mathbb{R} is uncountable and has the same cardinality as $2^{\mathbb{N}}$.
- 4. Prove that

$$|x - y| \ge ||x| - |y|| \, \forall x, y \in \mathbb{R}.$$

The Homework is due Friday, October 18