Assignment 20

1. Classify the critical points of

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto x^{2}+y^{2}-x^{4}-y^{4}
$$

2. Let $f \in \mathrm{C}^{3}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ and $x \in \mathbb{R}^{n}$ be such that

$$
f(x)=0, \nabla f(x)=0, D^{2} f(x)=0
$$

Assuming that there is $\alpha \in \mathbb{N}^{n}$ with $|\alpha|=3$ and $\partial^{\alpha} f(x) \neq 0$, what can you say about the critical point x ?
3. Let B_{f} be the body of revolution obtained by rotating the graph of $f \in \mathrm{C}([-1,1],(0, \infty))$ about the x-axis in \mathbb{R}^{3}. Compute its volume. [Hint: Change of variables.]
4. Compute ∇f for

$$
f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}, A \mapsto \operatorname{det}(A)
$$

at $A=E_{n}$ where E_{n} is the identity matrix.
5. You ask a question.

The Homework is due Friday, May 1.

