Assignment 4

1. Let $A = (a_{jk})_{j,k \in \mathbb{N}}$ be a double array of real numbers and let

$$d = (d_1, d_2, d_3, \cdots) = (a_{11}, a_{21}, a_{12}, a_{31}, a_{22}, a_{13}, \cdots)$$

be the sequence obtained by concatenating the finite diagonals

$$d_m = (a_{m1}, a_{m-12}, \cdots, a_{1m}), m \in \mathbb{N}.$$

Show that any limit point of any row $A_{j\bullet} = (a_{jk})_{k \in \mathbb{N}}$ or column $A_{\bullet k} = (a_{jk})_{j \in \mathbb{N}}$ of A is a also a limit point of the sequence d. Do we obtain all limit points of d this way?

2. Let $A \subset \mathbb{R}$. We say that $B \subset A$ is open in A, or, concisely $B \subset A$, iff there is an open set $B \subset \mathbb{R}$ with

$$B = A \cap \tilde{B}$$
.

Show that

- (i) \emptyset , $A \stackrel{o}{\subset} A$.
- (i) $\emptyset, A \subset A$. (ii) If $B_j \stackrel{o}{\subset} A$ for $j \in \mathbb{N}$, then $\bigcup_{j \in \mathbb{N}} B_j \stackrel{o}{\subset} A$. (iii) If $B_j \stackrel{o}{\subset} A$ for $j = 1, \dots, m$ $(m \in \mathbb{N})$, then $\bigcap_{1 \le j \le m} B_j \stackrel{o}{\subset} A$.

Is [0,1/2) open in [0,1]? What about (0,1/2]? Is $\{0\}$ open in \mathbb{N} ? Is it open in \mathbb{Q} ?

3. Let $x \in \mathbb{R}^{\mathbb{N}}$ and let

$$X = \{ y \in \mathbb{R} \mid y = x_j \text{ for some } j \in \mathbb{N} \}.$$

What is the relation between the limit points of the sequence x and those of the set X?

4. Let $A \subset \mathbb{R}$. The sets \overline{A} , $\overset{\circ}{A}$ and LP(A) were defined in class. Let, in addition, $\partial A = \overline{A} \setminus \overset{\circ}{A}$. Prove or disprove the following:

$$\stackrel{\circ}{A} \subset \overline{A} \,, \, \overline{A} = LP(A) \,,$$

$$LP(A) \subset A \,, \, LP(LP(A)) \subset LP(A) \,,$$

$$LP(A) \subset LP(LP(A)) \,, \, \overline{\partial A} = \partial A \,,$$

$$\overline{A} = LP(A) \cup A \,, \, \partial(\partial A) = \partial A \,.$$

The Homework is due Friday, November 1