Assignment 5

1. Let C_1 and C_2 be compact subsets of \mathbb{R} . Show that $C_1 + C_2 = \{x + y \mid x \in C_1 \text{ and } y \in C_2\}$

is also compact.

- 2. Give examples of a continuous function which is not Hölder continuous of any exponent and of a Hölder continuous function which is not Lipschitz.
- 3. Let $f \in \mathcal{C}(\mathbb{R})$. Then

$$\begin{split} [f = \alpha] &= \{ x \in \mathbb{R} \,|\, f(x) = \alpha \} \text{ is closed } \forall \alpha \in \mathbb{R} \\ [f > \alpha] &= \{ x \in \mathbb{R} \,|\, f(x) > \alpha \} \text{ is open } \forall \alpha \in \mathbb{R} \end{split}$$

Show that

 $\partial[f > \alpha] \subset [f = \alpha].$

4. Let $g, h \in C(\mathbb{R})$ and prove that $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) := \begin{cases} g(x) \,, & x \le a \\ h(x) \,, & x > a \end{cases}$$

is continuous iff $g(a) = \lim_{x \to a+} h(x)$.

The Homework is due Tuesday, November 12