Assignment 8

1. Let $A \subset \mathbb{R}$ be a closed set. Construct a function $f \in \mathrm{C}^{1}(\mathbb{R}, \mathbb{R})$ such that

$$
f(x)=0 \Longleftrightarrow x \in A
$$

2. Let $k \in \mathbb{N}$ and show that

$$
f:(0, \infty) \rightarrow \mathbb{R}, x \mapsto x^{1 / k}
$$

can be defined as the inverse of $g:(0, \infty) \rightarrow \mathbb{R}, x \mapsto x^{k}$ and compute f^{\prime}.
3. Show that there exists a real real-valued continuously differentiable function which is invertible and for which the inverse is not Hölder continuous of any exponent.
4. Let $f \in \mathrm{C}^{2}((a, b), \mathbb{R})$ and assume that $f^{\prime \prime}(x) \geq 0, x \in(a, b)$. Prove that

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y), t \in[0,1], x, y \in(a, b)
$$

