Assignment 9

Let $a<b \in \mathbb{R}$ and denote by P the generic partition

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b
$$

of the interval $[a, b]$. Let y_{k} denote any point in $\left[x_{k-1}, x_{k}\right]$. Finally define

$$
\triangle(P)=\sup _{k=1, \ldots, n}\left(x_{k}-x_{k-1}\right)
$$

the maximum interval length of the partition P.

1. Let

$$
\begin{aligned}
& \mathrm{S}([a, b], \mathbb{R})=\{\varphi:[a, b] \rightarrow \mathbb{R} \mid \\
&\left.\qquad\left.\right|_{\left[x_{k-1}, x_{k}\right]} \equiv \varphi_{k} \in \mathbb{R}, k=1, \ldots, n \text { for some } P\right\}
\end{aligned}
$$

be the vector space of step functions defined on the interval $[a, b]$. Show that any $f \in \mathrm{C}([a, b], \mathbb{R})$ can be approximated by a sequence of step functions, that is, $\forall \varepsilon>0$ there is $\varphi \in \mathrm{S}([a, b], \mathbb{R})$ s.t

$$
\|f-\varphi\|_{\infty}=\sup _{x \in[a, b]}|f(x)-\varphi(x)| \leq \varepsilon
$$

2. Let $g \in \mathrm{C}^{1}([a, b], \mathbb{R})$ be increasing. Prove that

$$
\int_{a}^{b} f(x) d g(x)=\lim _{\triangle(P) \rightarrow 0} \sum_{k=1}^{n} f\left(y_{k}\right)\left(g\left(x_{k}\right)-g\left(x_{k-1}\right)\right)
$$

is well-defined for $f \in \mathrm{C}([a, b], \mathbb{R})$. Also show that

$$
\int_{a}^{b} f(x) d g(x)=\int_{a}^{b} f(x) g^{\prime}(x) d x
$$

3. Let $f \in \mathrm{C}^{1}([a, b], \mathbb{R})$ and $x, y \in[a, b]$. Prove the mean value theorem in integral form

$$
f(y)=f(x)+(y-x) \int_{0}^{1} f^{\prime}((1-t) x+t y) d t
$$

4. Let $x_{0} \in U_{x_{0}} \stackrel{o}{\subset} \mathbb{R}$ and $f, g \in \mathrm{C}^{3}\left(U_{x_{0}}\right)$ with

$$
f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=0=g^{\prime}\left(x_{0}\right)=g\left(x_{0}\right) \text { and } g^{\prime \prime}\left(x_{0}\right) \neq 0
$$

Show that f / g is differentiable at x_{0} and compute the derivative there.
5. You ask a question.

The Homework is due Friday January 172002

