
Chapter 9

Differential Calculus in
Euclidean Space

We have already seen that differential calculus provides many useful tools in
the analysis of local properties of real, real-valued functions. The basic idea
is that of locally approximating any smooth function by an easier one (an
affine function or, more in general by a polynomial) and deduce properties
it has from properties of this approximation. The concept of derivative and
differentiability play a central role.

9.1 The differential

Motivation. Here we would like to consider general functions f : D ⊂
Rn → Rm of n variables taking vector values in Rm for any two m,n ∈ N.
First we need an appropriate concept of derivative. In the real real-valued
case we have that the derivative could be thought of as the slope of the
tangent line to the graph of the function at the point of interest whenever
it is at all possible to obtain a sensible affine approximation. This can be
done in this context, too. The general form of an affine function is in this
case

x 7→ Ax + b , D → Rm

where A ∈ Rm×n and b ∈ Rm. If it is possible to “well” approximate a given
function by such an affine map about a given point, we shall say that the
function is differentiable there. The approximation has to be good enough
in the sense that

|f(x + h)− b−Ah|2 = o(|h|2) as h→ 0
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Observe that we have to measure size with the respective norms defined on
Rn and Rm. It is easy to see that b = f(x) if f is continuous, which we shall
assume. So the problem boils down to whether we are able to find A such
that the approximation is better than first order as stated above. This will
be the total point of view in that we try to understand the function f all at
once.
We shall also take a more partial view and, upon choosing a curve

γ : (−1, 1)→ D ,

we can study the behavior of f along that curve, i.e., the behavior of f ◦ γ.
The latter has the advantage of being a real function which we know how
to deal with better. If 0 ∈ D, we could for instance look at

t 7→ f(th, 0, · · · , 0) , (−1, 1)→ Rm

by choosing the appropriate path. In this case we would be fixing all vari-
ables but one.

Definition 9.1.1. (Differentiability)
Let f : U

o
⊂ Rn → Rm be given. It is called differentiable at x ∈ U iff

∃A ∈ L(Rn, Rm) = Rm×n s.t. f(x + h) = f(x) + Ah + o(|h|2) as h→ 0

which simply means

∀ ε > 0 ∃ δ > 0 s.t. |f(x + h)− f(x)−Ah| ≤ ε|h|2 ∀ h with |h|2 ≤ δ .

If that is the case, then the linear map A is denoted by Df(x), the differ-
ential, or simply the derivative, of f at x.

Remarks 9.1.2. (a) f is differentiable at x⇐⇒ f1, . . . , fm are differentiable
at x. What is the relation between Df(x) and Dfj(x) , j = 1, . . . ,m?
(b) If f is differentiable at x, then it is Lipschitz continuous at x.

Definition 9.1.3. Let f : D
o
⊂ Rn → Rm be given and assume it is dif-

ferentiable at each point x ∈ D in its domain. The function f is called
differentiable on D and

Df : D → Rm×n , x 7→ Df(x)

is called derivative of f . We say f is continuously differentiable if Df is
continuous. The collection of all continuously differentiable functions defined
on D with values in Rm is denoted by

C1(D, Rm) =
{
f ∈ C(D, Rm)

∣∣ Df ∈ C(D, Rm×n)
}

in accordance with our previously introduced notation.
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Remarks 9.1.4. (a) The operator

D : C1(D, Rm)→ C(D, Rm×n) , f 7→ Df

is linear.
(b) If g ∈ C1(D, R) and f ∈ C1(D, Rm), then fg ∈ C1(D, Rm).

9.2 Partial Derivatives

How do we compute the entries of Df(x)? Well, the function

f : D
o
⊂ Rn → Rm

has m-components f1, . . . , fm. Then, letting h = ej for j = 1, . . . , n, we
have by definition (if the f is differentiable at x ∈ D) that

f(x + tej) = f(x) + tDf(x)ej + o(|tej |) (t→ 0)

and therefore

fk(x + tej) = fk(x) + t
(
Df(x)ej

)
k

+ o(|t|) (t→ 0) , k = 1, . . . ,m ,

Definition 9.2.1. (Partial and Directional Derivative)
Since

(
Df(x)ej

)
k

= Df(x)jk we therefore have that

Df(x)jk = lim
t→0

fk(x + tej)− fk(x)
t

=
∂fk

∂xj

(x) = ∂jfk(x)

which is called j-th partial derivative of fk at x and where j ∈ {1, . . . , n}
and k ∈ {1, . . . ,m}. More in general, we can define the derivative of f at x
in any direction u ∈ Rn by

lim
t→0

f(x + tu)− f(x)
t

= ∂uf(x)

called directional derivative of f at x in direction u.

Directional derivatives have the advantage that they can be computed
just like for real functions. They, however, contain only partial information
about the function f , specifically only about its local behavior along a certain
line in direction u emanating from the point x.
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Theorem 9.2.2. Let f : D
o
⊂ Rn → Rm be given such that Df(x) exists for

x ∈ D and let u ∈ Rn. Then ∂uf(x) exists and

∂uf(x) = Df(x)u .

The proof is left as an exercise.

Remark 9.2.3. The existence of all partial derivatives ∂jf(x) at a point
x ∈ D, even of all directional derivatives, does not make f differentiable at
x. Take the function defined by

f
(
r cos(θ), r sin(θ)

)
:=

{
rg(θ) , (r, θ) ∈ (0,∞)× [0, 2π) ,

0 , r = 0

where g is any function satisfying g(−θ) = −g(θ). Why do we need g to be
odd? Then it is easily checked that ∂uf(0, 0) = g(θ) if u =

(
cos(θ), sin(θ)

)
,

but f is not even differentiable in the origin if g is not differentiable with
respect to θ.

Theorem 9.2.4. Let f : D
o
⊂ Rn → Rm and x ∈ D. Assume that

∂jf ∈ C(Ux, Rm) for j = 1, . . . , n

and some neighborhood Ux ∈ U(x). Then f is differentiable at x. Morevover

f ∈ C1(D, Rm)⇐⇒ ∂jf ∈ C(D, Rm) ∀ j ∈ {1, . . . , n} .

In particular it follows that

C1(D, Rm) =
{
f ∈ C(D, Rm)

∣∣ ∂jf ∈ C(D, Rm) ∀ j = 1, . . . , n
}

.

Proof. We give the proof only for the case m = 1, n = 2 since, in the general
case, it is perfectly analogous. We need to prove that

f(y1, y2)− f(x1, x2) = ∂1f(x1, x2)(y1 − x1) + ∂2f(x1, x2)(y2 − x2)+
o(|(x1, x2)− (y1, y2)|2) .

By using the mean value theorem 5.2.4 on the two differences in the right
hand side of

f(y1, y2)− f(x1, x2) = f(y1, y2)− f(x1, y2) + f(x1, y2)− f(x1, y1)
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we find ξ ∈ I(x1, y1) and ξ2 ∈ I(x2, y2) such that

f(y1, y2)− f(x1, x2) = ∂1f(ξ1, y2)(y1 − x1) + ∂2f(x1, ξ2)(y2 − x2) .

which is not quite what we need. But, if the error

E = ∂1f(x1, x2)(y1 − x1) + ∂2(x1, x2)(y2 − x2)+
− ∂1f(ξ1, y2)(y1 − x1)− ∂2f(x1, ξ2)(y2 − x2)

incurred, can be proven to be a o(|(x1, x2) − (y1, y2)|2), the claim follows.
Since

|E|
|x− y|

≤ |∂1f(x1, x2)− ∂1f(ξ1, y2)|+ |∂2f(x1, ξ2)− ∂2(y1, y2)|

and since both terms on the right hand side can be made arbitrarily small by
making

√
(y1 − x1)2 + (y2 − x2)2 small (by continuity of the partial deriva-

tives), this is indeed the case and the proof is complete. Why do we say that
the proof in general is similar? Can you perform the proof in the general
case?

√

9.3 The Chain Rule

Theorem 9.3.1. (Chain Rule)
Let f : Df

o
⊂ Rn → Rm and g : Dg

o
⊂ Rm → Rp be such that f(Df ) ⊂ Dg.

If f is differentiable at x ∈ D and g is differentiable at f(x), then g ◦ f is
differentiable at x and

D
(
f ◦ g

)
(x) = Dg

(
f(x)

)
Df(x)

Moreover, if f and g are continuously differentiable on their respective do-
main, so is g ◦ f on Df .

Proof. We know that

f(y) = f(x) + Df(x)(y − x) + R1(x, y)

and

g
(
f(y)

)
= g

(
f(x)

)
+ Dg

(
f(x)

)(
f(y)− f(x)

)
+ R2

(
f(x), f(y)

)
= g

(
f(x)

)
+ Dg

(
f(x)

)[
Df(x)(y − x) + R1(x, y)

]
+ R2

(
f(x), f(y)

)
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Now observe that

|Dg
(
f(x)

)
R1(x, y)| ≤ c|R1(x, y)| = o(|x− y|2) as y → x

and that
|R2

(
f(x), f(y)

)
| ≤ ε|f(x)− f(y)|

for some δ > 0 and whenever |f(x)− f(y)| ≤ δ since R2(w, z) = o(|w− z|2).
Finally f is (locally) Lipschitz continuous at x, since f is differentiable there
which gives

|f(x)− f(y)| ≤ c|x− y|2
for |x− y|2 ≤ δ and some (other) δ > 0 which, then, gives

|R2

(
f(x), f(y)

)
| ≤ cε|x− y|2 for |x− y|2 ≤ δ

and the claim follows.
√

Remark 9.3.2. It follows that

∂j(g ◦ f)(x) = D(g ◦ f)(x)ej = Dg
(
f(x)

)
Df(x)ej =

m∑
k=1

∂kg
(
f(x)

)
∂jfk(x) .

Theorem 9.3.3. Let f : Df
o
⊂ Rn → R and x ∈ D; if f assumes a

maximum or minimum at x and f is differentiable there, then Df(x) = 0.

Proof. Since x ∈ D
o
⊂ Rn, there is t0 > 0 such that

x + tej ∈ D ∀ j = 1, . . . , n ∀ |t| ≤ t0 .

Since f assumes a minimum or a maximum at x, so do the maps

gj : (−t0, t0)→ R , t 7→ f(x + tej) ∀j = 1, . . . , n

at t = 0. It then follows from theorem 5.2.2(iii) that

0 =
d

dt
gj(0) = ∂jf(x) ∀j = 1, . . . , n

which clearly gives Df(x) = 0.
√

9.4 Higher Derivatives

Just as in the case of real functions we now move on to higher order deriva-
tives which, when they exist, give us some information about the convexity
properties of functions. The latter make it possible to tell maxima, minima
and saddle points apart. Taylor’s expansion formula will also be generalized.
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9.4.1 Mixed Partial Derivatives

First we would like to take a closer look at second derivatives. In particular
we need to make sure that we understand what kind of objects they are.
On the one hand we could simply say that the are the first derivative of the
first derivative. This, albeit correct, might, however, conceal their mapping
properties. Let us therefore start with a smooth function

f : Df
o
⊂ Rn → Rm .

Its derivative is the map

Df : D → L(Rn, Rm)=̂Rm×n , x 7→ Df(x) .

Taking a further derivative is going to give us a map

D2f = D
(
Df

)
: D → L

(
Rn,L(Rn, Rm)

)
=̂Rm×n×n

Since a vector valued map can always be considered component by compo-
nent and for the sake of simplicity we only consider the case m = 1. Then
the derivative at a point

L(Rn, R) 3 Df(x) = [∂1f(x) ∂2f(x) . . . ∂nf(x)]

is a row vector. It is sometimes useful to think of it as a column vector, in
which cases we call it the gradient of f and denote it by ∇f(x). If we now
take a further derivative of the gradient we obtain the so-called Hessian of
the function f

D(∇f) =


D(∂1f)
D(∂2f)

...
D(∂nf)

 =

∂1(∂1f)∂2(∂1f) · · · ∂n(∂1f)
...

∂1(∂nf)∂2(∂nf) . . . ∂n(∂nf)

 =
[
∂j∂kf

]
1≤j,k≤n

We also define the function space

C2(D, R) :=
{
f ∈ C1(D, R)

∣∣ ∂jf ∈ C1(D, R)
}

=
{
f ∈ C(D, R)

∣∣ ∂j∂kf ∈ C(D, R)
}

of twice continuously differentiable functions.

Theorem 9.4.1. (Mixed Derivatives)
If f ∈ C2(D, R) then

∂j∂kf = ∂k∂jf ∀ j, k ∈ {1, . . . , n} .
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Proof. For h ∈ Rn we introduce the notation 4hf(x) = f(x + h) − f(x)
whenever it makes sense. It follows that

∂jf(x) = lim
s→0

1
s
4sejf(x)

and it is easy to check that

4sej4tek
= 4tek

4sej ∀ j, k = 1, . . . , n .

Observe that theorem 5.2.4 implies the existence of s̄ ∈ I(0, s) such that

1
s
4sejf(x) = (∂jf)(x + s̄ej)

and, consequently

1
st
4sej

(
4tek

f(x)
)

=
1
s
4sej

(
(∂kf)(x + t̄ek)

)
= (∂j∂kf)(x + s̄ej + t̄ek)

or

1
st
4tek

(
4sejf(x)

)
=

1
t
4tek

(
(∂jf)(x + s̃ej)

)
= (∂k∂jf)(x + s̃ej + t̃ek)

Since the two representations have to coincide and taking the limits t, s→ 0
in whichever order (since the second partial are continuous) we obtain

(∂j∂kf)(x) = (∂k∂jf)(x)

which gives the claim since x ∈ D was arbitrary.
√

9.4.2 Local Extrema

Definition 9.4.2. (Critical Point)
Let f ∈ C1(D, R) for some D

o
⊂ Rn. A point x ∈ D is called critical point if

∇f(x) = 0.

Motivation. Since vanishing of the gradient is a necessary condition for a
local extremum, we would like to find criteria that would allow us to decide
it is a point of minimum, maximum or else. Assume that f ∈ C2(D, R) and
denote (abusing the notation) its Hessian by D2f . By the previous theorem
it is symmetric. Let now x ∈ D be a point of minimum for f . Then so is
t = 0 for

gu : (−t0, t0)→ R , t 7→ f(x + tu) .
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Observe that g′u(0) =
(
∇f(x)|u

)
= 0 and that

g′′u(t) =
d

dt

n∑
j=1

∂jf(x + tu)uj =
n∑

k=1

n∑
j=1

∂k∂jf(x + tu)ukuj .

Thus

0 ≤ g′′u(0) =
n∑

k=1

n∑
j=1

∂k∂jf(x)ukuj = uT D2f(x)u

and this is valid for any nonzero direction u ∈ Rn. We also know that if
g′u(0) = 0 and g′′u(0) > 0, then gu has a point of minimum at t = 0. It is
therefore legitimate to hope that if

0 < uT D2f(x)u ∀ 0 6= u ∈ Rn

we would have that x is a minimum of f .

Definition 9.4.3. Every symmetric matrix A = AT ∈ Rn×n defines a
quadratic form

x 7→ xT Ax , Rn → R .

It is called positive definite iff 0 < xT Ax ∀ x 6= 0 and positive semi-definite
(A > 0) or nonnegative definite (A ≥ 0) if the non strict inequality holds.
Can you use your linear algebra knowledge to reformulate the defining con-
dition?

Lemma 9.4.4. Let A = AT , B = BT ∈ Rn×n. Then
(i) A > 0⇐⇒ ∃ ε > 0 s.t. xT Ax ≥ ε|x|2 ∀ x ∈ Rn.
(ii) If A > 0 and B−A is small, then B > 0. This say that the set of positive
definite symmetric matrices is open in the set of symmetric matrices.

Proof. (i) By observing that

(tx)T A(tx) = t2xT Ax ∀ t > 0

we conclude that

0 < xT Ax ∀ x ∈ Rn \ {0} ⇐⇒ 0 < xT Ax ∀ |x| = 1 .

Since the mapping x 7→ xT Ax , Sn−1 → (0,∞) is continuous and Sn−1 is
compact we see that

ε =: min
x∈Sn−1

xT Ax > 0
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and finally

ε|x|2 ≤ xT Ax since ε ≤ xT

|x|
A

x

|x|
∀ x ∈ Rn \ {0} .

When x = 0 the inequality is trivially satisfied.
(ii) If B−A is sufficiently small, that is if xT (B−A)x ≤ ε

2 |x|
2, for instance,

then
xT Bx = xT Ax + xT (B −A)x ≥ ε|x|2 − ε

2
|x|2 ≥ ε

2
|x|2

and the claim follows.
√

Theorem 9.4.5. Let f ∈ C2(D, R) for some D
o
⊂ Rn and let x ∈ D be a

critical point. Then
(i) If the point x is a local point of minimum [maximum], then we have that

D2f(x) ≥ 0 [≤ 0].
(ii) If D2f(x) > 0 [< 0], then x is a local strict minimum [maximum].

Proof. (i) The first claim is a direct consequence of the calculations we
performed in the motivation.
(ii) Reasoning purely line by line (through x) we would get

d2

dt2
f(x + tu)

∣∣
t=0

> 0

and, consequently that

f(x + tu) > f(x) ∀ |t| ≤ t0(u)

for some t0(u) > 0 which depends on u. This is not enough to claim, as we
need to, that

f(y) > f(x) ∀ y ∈ B(x, ε) for some ε > 0 .

Let therefore u ∈ Rn with |u| = 1 and define gu(t) := f(x + tu) for |t| ≤ ε
where ε > 0 is chosen so small that B(x, ε) ∈ D. Then

g′u(0) = 0 , g′′u(t) = uT D2f(x + tu)u > 0 ∀ |t| ≤ ε

for a possibly smaller ε > 0 since D2f is continuous at x and lemma 9.4.4.
The point x is therefore a strict minimum in [|t| ≤ ε] which concludes the
proof (why?).

√
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Remark 9.4.6. A symmetric matrix A ∈ Rn×n is positive definite if and
only if its eigenvalues are positive, that is, if λj > 0 for all j ∈ {1, . . . , n}.
Recall that a symmetric matrix is always diagonalizable.

Lemma 9.4.7. Let 0 6= x ∈ Rn be a critical point of the map

x 7→ xT Ax

xT x
, Rn \ {0} → R

then it is an eigenvector of A.

9.4.3 Taylor Expansion

Let f ∈ Cm(D, R) for some D
o
⊂ Rn. Can we do better than linear ap-

proximation? In other words, can we generalize Taylor expansions to multi-
variable case?

Lemma 9.4.8. Pick u ∈ Rn and t0 > such that B(x, t0)
o
⊂ D and define

g(t) := f(x + tu) for |t| ≤ t0. Then, for k ≤ m,

1
k!

dk

dtk
g(t) =

1
k!

g(k)(t) =
∑
|α|=k

uα

α!
∂αf(x + tu)

where α! = α1! · · ·αn! and 0! = 1.

Proof. The proof is done by induction. We shall, however, look at the cases
k = 1, 2 to get a better feeling. As for the first

g′(t) =
n∑

j=1

uj∂jf(x + tu)

and therefore, for the second

g′′(t) =
n∑

l=1

n∑
j=1

uluj∂l∂jf(x + tu) = 2
∑
|α|=2

uα

α!
∂αf(x + tu) .

Now, by induction hypothesis, we have that

1
(k − 1)!

g(k−1)(t) =
∑

|α|=k−1

uα

α!
∂αf(x + tu)
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and, consequently,

1
k(k − 1)!

g(k)(t) =
∑

|α|=k−1

n∑
j=1

uju
α

kα!
∂j∂αf(x + tu)

=
∑
|β|=k

1
k

n∑
j=1

βj

β!
uβ∂βf(x + tu)

and the claim follows since |β| = k implies that 1
k

∑n
j=1 βj = 1.

√

By using Taylor expansion of the real function g

g(t) =
m∑

k=0

∑
|α|=k

uα

α!
∂αf(x)tk + o(tm)

we will obtain the more general Taylor expansion f

f(y) =
∑
|α|≤m

(y − x)α

α!
∂αf(x) + o(|y − x|)

by setting

u =
y − x

|y − x|
and t = |y − x| .

This is precisely the idea behind the proof of the next theorem.

Theorem 9.4.9. (Taylor Expansion)
Let f ∈ Cm(D, R) for some D

o
⊂ Rn and x ∈ D. Define the Taylor polyno-

mial Tmf(x, y) of order m of f at x by

Tmf(x, y) :=
∑
|α|≤m

1
α!

∂αf(x)(y − x)α .

Then
f(y) = Tmf(x, y) + o(|y − x|m) as y → x .

Proof. We need to show that

∀ ε > 0 ∃ δ > 0 s.t. |f(y)− Tmf(x, y)| ≤ ε|y − x|m if |y − x| ≤ δ .

If h(y) := f(y)− Tmf(x, y), then ∂βh(x) = 0 for each |β| ≤ m. This follows
from

∂β(x− ·)α =

{
0 , β 6= α

α! , β = α
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It follows that, for ε > 0, we can find δ > 0 such that

|∂βh(y)| ≤ ε if |y − x| ≤ δ and |β| ≤ m .

Next, set g(t) := h
(
x + t(y − x)

)
and observe that

g(k)(t) =
∑
|α|=m

tk(y − x)k

α!
∂αh

(
x + t(y − x)

)
.

It follows that
g(k)(0) = 0 ∀ k ≤ m .

Using the simple fact that |x + t(y − x)− x| = t|y − x| ≤ δ for t ∈ [0, 1] we
conclude that

|g(m)(t)| ≤ ε
∑
|α|=m

tm

α!
|y − x|α ≤ cε|y − x|m if |y − x| ≤ δ

where c =
∑

|α|=m
1
α! and depends only on m and n. Finally

|h(y)| = |g(1)| ≤ |gm(t1)| ≤ cε|y − x|m .

where the existence of t1 ∈ [0, 1] follows from the proof of theorem 5.4.6.
√

Remark 9.4.10. (Lagrange Remainder Formula)
Let f ∈ Cm+1(D, R) and x, y ∈ D, then z can be found on the segment
{x + t(y − x) | t ∈ [0, 1]} such that

f(y)− Tmf(x, y) =
∑

|α|=m+1

(y − x)α

α!
∂αf(z) .

This, in particular shows, that

f(y)− Tmf(x, y) = O(|y − x|m+1) as y → x

in this case. The extra regularity assumption is crucial.

Proof. The proof follows the steps of the that of theorem 9.4.9 and exploits
the single variable remainder formula.

√


