$\rm Math~205$

Fall Term 2005

Final Examination

Print your name:

Print your ID #: _____

You have 2 hours to solve the problems. Good luck!

1. Let $f, g: \mathbb{R} \to \mathbb{R}$ and assume that $f(x) = O(|x - x_0|)$ and g(x) = o(1) as $x \to x_0$. What can you say about the product fg as $x \to x_0$ and why?

- **2.** Let $f : \mathbb{R} \to \mathbb{R}$ and consider
 - (A) f is differentiable at $x_0 \in \mathbb{R}$ with derivative $f'(x_0) \in \mathbb{R}$,
 - (B) $\lim_{h\to 0} \frac{1}{2h} \left[(f(x+h) f(x-h)) \right] = f'(x_0).$

Does (A) imply (B)? Does (B) imply (A)? If your answer is yes, justify it; if it is no, give a counterexample.

3. Let $B \subset \mathbb{R}$ be bounded and $f : B \to \mathbb{R}$ be uniformly continuous. Show that f is bounded.

4. Let $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ be two sequences of reals. Denote the set containing their accumulation points by S_1 and S_2 , respectively.

(a) Let a new sequence $(z_n)_{n \in \mathbb{N}}$ be given by $z_n = x_n + y_n$, $n \in \mathbb{N}$, and denote by S_3 the set of its accumulation points. Is $S_3 \subset S_1 + S_2$? Or $S_1 + S_2 \subset S_3$? Motivate your answers.

(b) Consider now the sequence $(x_1, x_2, y_1, x_3, x_4, y_2, x_5, y_6, ...)$. Characterize the set of its accumulation points in terms of S_1 and S_2 . Justify your answer.

5. Compute $\lim_{n\to\infty} \left[(27n^3 + 1)^{1/3} - 3n \right]$ and justify your answer.

6. Let $f \in C(\mathbb{R}, \mathbb{R})$ be such that

$$\begin{split} \lim_{|x|\to\infty} |f(x) - x| &= 0 \text{ that is, such that} \\ \forall \varepsilon > 0 \; \exists \; R > 0 \text{ with } |f(x) - x| \leq \varepsilon \; \forall \; x \in \mathbb{R} \text{ s.t. } |x| \geq R \,. \end{split}$$

Prove that f is uniformly continuous.

7. Compute an approximation of $\sqrt{404}$ to one digit after the comma and give an estimate for the error incurred.

8. Let $f: (0, \infty) \to \mathbb{R}$ be differentiable and assume that $\lim_{x\to\infty} f(x) = 0$. Does it follow that $\lim_{x\to\infty} f'(x) = 0$? Justify your answer by giving a proof or by constructing a counterexample. **9.** Let $f \in C^1(\mathbb{R}, \mathbb{R})$ and $x_0, a, b \in \mathbb{R}$. Show that

$$|f(x) - a - b(x - x_0)| = o(|x - x_0|)$$
 as $x \to x_0$

already implies that $a = f(x_0)$ and $b = f'(x_0)$.