Final Examination

Print your name: \qquad
\qquad

Print your ID \#: \qquad

You have 2 hours to solve the problems. Good luck!

1. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ and assume that $f(x)=O\left(\left|x-x_{0}\right|\right)$ and $g(x)=o(1)$ as $x \rightarrow x_{0}$. What can you say about the product $f g$ as $x \rightarrow x_{0}$ and why?
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and consider
(A) f is differentiable at $x_{0} \in \mathbb{R}$ with derivative $f^{\prime}\left(x_{0}\right) \in \mathbb{R}$,
(B) $\lim _{h \rightarrow 0} \frac{1}{2 h}\left[(f(x+h)-f(x-h)]=f^{\prime}\left(x_{0}\right)\right.$.

Does (A) imply (B)? Does (B) imply (A)? If your answer is yes, justify it; if it is no, give a counterexample.
3. Let $B \subset \mathbb{R}$ be bounded and $f: B \rightarrow \mathbb{R}$ be uniformly continuous. Show that f is bounded.
4. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ be two sequences of reals. Denote the set containing their accumulation points by S_{1} and S_{2}, respectively.
(a) Let a new sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ be given by $z_{n}=x_{n}+y_{n}, n \in \mathbb{N}$, and denote by S_{3} the set of its accumulation points. Is $S_{3} \subset S_{1}+S_{2}$? Or $S_{1}+S_{2} \subset S_{3}$? Motivate your answers.
(b) Consider now the sequence $\left(x_{1}, x_{2}, y_{1}, x_{3}, x_{4}, y_{2}, x_{5}, y_{6}, \ldots\right)$. Characterize the set of its accumulation points in terms of S_{1} and S_{2}. Justify your answer.
5. Compute $\lim _{n \rightarrow \infty}\left[\left(27 n^{3}+1\right)^{1 / 3}-3 n\right]$ and justify your answer.
6. Let $f \in \mathrm{C}(\mathbb{R}, \mathbb{R})$ be such that

$$
\begin{aligned}
& \lim _{|x| \rightarrow \infty}|f(x)-x|=0 \text { that is, such that } \\
& \quad \forall \varepsilon>0 \exists R>0 \text { with }|f(x)-x| \leq \varepsilon \forall x \in \mathbb{R} \text { s.t. }|x| \geq R .
\end{aligned}
$$

Prove that f is uniformly continuous.
7. Compute an approximation of $\sqrt{404}$ to one digit after the comma and give an estimate for the error incurred.
8. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be differentiable and assume that $\lim _{x \rightarrow \infty} f(x)=0$. Does it follow that $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$? Justify your answer by giving a proof or by constructing a counterexample.
9. Let $f \in \mathrm{C}^{1}(\mathbb{R}, \mathbb{R})$ and $x_{0}, a, b \in \mathbb{R}$. Show that

$$
\left|f(x)-a-b\left(x-x_{0}\right)\right|=o\left(\left|x-x_{0}\right|\right) \text { as } x \rightarrow x_{0}
$$

already implies that $a=f\left(x_{0}\right)$ and $b=f^{\prime}\left(x_{0}\right)$.

