Final Examination

Print your name:
Print your ID \#: \qquad

You have 2 hours to solve the problems. Good luck!

1. Let $g \in \mathrm{C}^{1}([c, d],[a, b])$ and $f \in \mathrm{C}([a, b])$. Define

$$
F(x):=\int_{a}^{g(x)} f(y) d y, x \in(a, b)
$$

Show that F is differentiable and compute its derivative.
2. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a decreasing sequence in $[0, \infty)$ and prove that

$$
\sum x_{n}<\infty \Longleftrightarrow \sum 2^{k} x_{2^{k}}<\infty .
$$

3. Let a sequence of functions $\left(f_{n}\right)_{n \in \mathbb{N}}$ be defined by

$$
f_{n}(x)=\cos (x)^{n}, x \in\left[0, \frac{\pi}{2}\right], n \in \mathbb{N} .
$$

Let $g \in \mathrm{C}\left(\left[0, \frac{\pi}{2}\right]\right)$ be such that $g(0)=0$. What is the limit of $\left(g f_{n}\right)_{n \in \mathbb{N}}$?
Is the convergence pointwise? Is it uniform? Justify your answer.
4. Show that f defined through

$$
f(x)=\log ^{2}(1+x)
$$

is analytic in a neighborhood of the origin. Compute the coefficients of its power series expansion about $x=0$.
5. Let (M, d) be a metric space. For a subset $A \subset M$ define

$$
\bar{A}=A \cup \operatorname{LP}(A)
$$

and show that

$$
\bar{A}=\bigcap\{B \subset M \mid A \subset B \text { and } B \text { is closed }\}
$$

6. Let (M, d) be a metric space. For a subset $A \subset M$ define

$$
\AA:=\{x \in A \mid \exists r>0 \text { s.t. } \mathbb{B}(x, r) \subset A\} .
$$

Prove or disprove: $(A \cup B)^{\circ}=\stackrel{\circ}{A} \cup \stackrel{\circ}{B},(A \cap B)^{\circ}=\stackrel{\circ}{A} \cap \stackrel{\circ}{B}$
7. Prove or disprove:

$$
\left\{\frac{1}{\sqrt{n}} \tanh (n x): \mathbb{R} \rightarrow \mathbb{R} \mid n \in \mathbb{N}\right\}
$$

is uniformly equicontinuous.
8. Assume that the improper integral $\int_{0}^{\infty} \frac{f(x)}{x} d x$ exists and show that

$$
\int_{0}^{\infty} \frac{f(x y)}{x} d x=\int_{0}^{\infty} \frac{f(x)}{x} d x \forall y \in(0, \infty)
$$

9. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a decreasing sequence of real-valued functions on $[a, b]$ which converges uniformly to $f_{\infty} \equiv 0$. Show that

$$
\sum_{n=1}^{\infty}(-1)^{n} f_{n}
$$

converges uniformly.

