Матн 205

WINTER TERM 2006

Final Examination

Print your name: ______

Print your ID #:

You have 2 hours to solve the problems. Good luck!

1. Let $g \in C^1([c,d],[a,b])$ and $f \in C([a,b])$. Define

$$F(x) := \int_{a}^{g(x)} f(y) \, dy \, , \, x \in (a,b) \, .$$

Show that ${\cal F}$ is differentiable and compute its derivative.

2. Let $(x_n)_{n\in\mathbb{N}}$ be a decreasing sequence in $[0,\infty)$ and prove that

$$\sum x_n < \infty \Longleftrightarrow \sum 2^k x_{2^k} < \infty \,.$$

3. Let a sequence of functions $(f_n)_{n\in\mathbb{N}}$ be defined by

$$f_n(x) = \cos(x)^n, x \in [0, \frac{\pi}{2}], n \in \mathbb{N}.$$

Let $g \in C([0, \frac{\pi}{2}])$ be such that g(0) = 0. What is the limit of $(gf_n)_{n \in \mathbb{N}}$? Is the convergence pointwise? Is it uniform? Justify your answer. **4.** Show that f defined through

$$f(x) = \log^2(1+x)$$

is analytic in a neighborhood of the origin. Compute the coefficients of its power series expansion about x = 0.

5. Let (M, d) be a metric space. For a subset $A \subset M$ define

$$\bar{A} = A \cup LP(A)$$

and show that

$$\bar{A} = \bigcap \{ B \subset M \, | \, A \subset B \text{ and } B \text{ is closed} \}.$$

6. Let (M, d) be a metric space. For a subset $A \subset M$ define

$$\overset{\circ}{A} := \left\{ x \in A \, | \, \exists \, r > 0 \text{ s.t. } \mathbb{B}(x, r) \subset A \right\}.$$

Prove or disprove: $(A \cup B)^{\circ} = \overset{\circ}{A} \cup \overset{\circ}{B}, \ (A \cap B)^{\circ} = \overset{\circ}{A} \cap \overset{\circ}{B}$

7. Prove or disprove:

$$\left\{\frac{1}{\sqrt{n}} \tanh(nx) : \mathbb{R} \to \mathbb{R} \,|\, n \in \mathbb{N}\right\}$$

is uniformly equicontinuous.

8. Assume that the improper integral $\int_0^\infty \frac{f(x)}{x} dx$ exists and show that

$$\int_0^\infty \frac{f(xy)}{x} \, dx = \int_0^\infty \frac{f(x)}{x} \, dx \, \forall \, y \in (0,\infty) \, .$$

9. Let $(f_n)_{n\in\mathbb{N}}$ be a decreasing sequence of real-valued functions on [a, b] which converges uniformly to $f_{\infty} \equiv 0$. Show that

$$\sum_{n=1}^{\infty} (-1)^n f_n$$

converges uniformly.