Final Examination - Solutions

1. Let $g \in \mathrm{C}^{1}([c, d],[a, b])$ and $f \in \mathrm{C}([a, b])$. Define

$$
F(x):=\int_{a}^{g(x)} f(y) d y, x \in(c, d) .
$$

Show that F is differentiable and compute its derivative.
Solution:
Let $G(x):=\int_{0}^{y} f(\xi) d \xi, y \in(a, b)$. Then, since f is continuous, G is differentiable and the claim follows from the chain rule thanks to

$$
F(x)=G(g(x)), x \in(c, d) .
$$

The chain rule and the fundamental theorem of calculus also give

$$
F^{\prime}(x)=f(g(x)) g^{\prime}(x) .
$$

2. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a decreasing sequence in $[0, \infty)$ and prove that

$$
\sum x_{n}<\infty \Longleftrightarrow \sum 2^{k} x_{2^{k}}<\infty
$$

Solution:
" ": Taking into account that the sequence is decreasing one sees that
$x_{1}+\underbrace{x_{2}+x_{3}}+\underbrace{x_{4}+x_{5}+\cdots+x_{8}}+\cdots \leq x_{1}+\underbrace{x_{2}+x_{2}}+\underbrace{4 x_{4}}+\cdots<\infty$.
" \Longrightarrow ": As for the converse the proof goes similarly since

$$
\begin{aligned}
& x_{1}+\underbrace{x_{2}+x_{2}}+\underbrace{4 x_{4}} \leq \ldots x_{1}+\underbrace{x_{1}+x_{2}}+\underbrace{x_{2}+x_{3}+x_{3}+x_{4}}+\ldots \\
&=2 \sum_{n=0}^{\infty} x_{n}<\infty .
\end{aligned}
$$

3. Let a sequence of functions $\left(f_{n}\right)_{n \in \mathbb{N}}$ be defined by

$$
f_{n}(x)=\cos (x)^{n}, x \in\left[0, \frac{\pi}{2}\right], n \in \mathbb{N} .
$$

Let $g \in \mathrm{C}\left(\left[0, \frac{\pi}{2}\right]\right)$ be such that $g(0)=0$. What is the limit of $\left(g f_{n}\right)_{n \in \mathbb{N}}$? Is the convergence pointwise? Is it uniform? Justify your answer.
Solution:
The convergence is uniform to the limit $f_{\infty} \equiv 0$ as the the following argument shows. For any given $\varepsilon>0$ we can find $\delta>0$ such that

$$
|g(x)| \leq \varepsilon \text { whenever } x \in[0, \delta]
$$

since g is assumed to be continuous. Also since

$$
\cos (x) \leq \cos (\delta) \forall x \in\left[\delta, \frac{\pi}{2}\right]
$$

we can find $N \in \mathbb{N}$ such that

$$
\cos (x)^{n} \leq \frac{\varepsilon}{\|g\|_{\infty}} \forall n \geq N .
$$

Combining the two inequalities it is obtained that

$$
g(x) \cos (x)^{n} \leq\left\{\begin{array}{ll}
\varepsilon, & x \in[0, \delta], \\
|g(x)| \frac{\varepsilon}{\|g\|_{\infty}} \leq \varepsilon, & x \in\left[\delta, \frac{\pi}{2}\right] .
\end{array}, \forall n \geq N .\right.
$$

4. Show that f defined through

$$
f(x)=\log ^{2}(1+x)
$$

is analytic in a neighborhood of the origin. Compute the coefficients of its power series expansion about $x=0$.
Solution:
The function f satisfies $f^{\prime}(x)=\frac{1}{1+x}=\sum_{n=0}^{\infty}(-x)^{n}, x \in(-1,1)$. It follows that

$$
\log (1+x)=\sum_{k=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}, x \in(-1,1) .
$$

For the product it therefore follows that

$$
\left[\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}\right]\left[\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}\right]=x^{2}+\sum_{n=2}^{\infty}\left[\sum_{k=1}^{n} \frac{(-1)^{n+1}}{k(n+1-k)}\right] x^{n+1}
$$

5. Let (M, d) be a metric space. For a subset $A \subset M$ define

$$
\bar{A}=A \cup \operatorname{LP}(A)
$$

and show that

$$
\bar{A}=\bigcap\{B \subset M \mid A \subset B \text { and } B \text { is closed }\} .
$$

Solution:
Since $A \cup \operatorname{LP}(A)$ is closed, it readily follows that

$$
A \cup \operatorname{LP}(A) \supset \bigcap\{B \subset M \mid A \subset B \text { and } B \text { is closed }\}
$$

As for the converse, we show that $A \subset B$ implies that $\bar{A} \subset \bar{B}=B$ where latter equality follows if B is closed. In fact, if $x \in \bar{A}$, then we can find a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in A such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$. If B is assumed to be closed, then $x \in \bar{B}=B$, since the sequence is clearly also on B. Thus any closed set B which contains A also contains \bar{A} and the claim follows.
6. Let (M, d) be a metric space. For a subset $A \subset M$ define

$$
\AA:=\{x \in A \mid \exists r>0 \text { s.t. } \mathbb{B}(x, r) \subset A\} .
$$

Prove or disprove: $(A \cup B)^{\circ}=\stackrel{\circ}{A} \cup \stackrel{\circ}{B},(A \cap B)^{\circ}=\stackrel{\circ}{A} \cap \stackrel{\circ}{B}$
Solution:
The first equality does not hold since

$$
A=\left[0, \frac{1}{2}\right], B=\left[\frac{1}{2}, 1\right]
$$

gives a counter-example in \mathbb{R} with the standard metric. The second equality holds. In fact, if $x \in(A \cap B)^{\circ}$, then we find $r>0$ such that $\mathrm{B}(x, r) \subset A \cap B$ which implies

$$
\mathrm{B}(x, r) \subset A, \mathrm{~B}(x, r) \subset B
$$

and therefore $x \in \stackrel{\circ}{A}$ as well as $x \in \stackrel{\circ}{B}$. Also, if $x \in \stackrel{\circ}{A} \cap \stackrel{\circ}{B}$, we find $r_{1}, r_{2}>0$ with

$$
\mathrm{B}\left(x, r_{1}\right) \subset A \text { and } \mathrm{B}\left(x, r_{2}\right) \subset B
$$

which gives

$$
\mathrm{B}(x, r) \subset A \cap B
$$

for $r:=\min \left(r_{1}, r_{2}\right)$.
7. Prove or disprove:

$$
\left\{\frac{1}{\sqrt{n}} \tanh (n x): \mathbb{R} \rightarrow \mathbb{R} \mid n \in \mathbb{N}\right\}
$$

is uniformly equicontinuous.
Solution:
The sequence it is uniformly convergent to 0 since

$$
\frac{1}{\sqrt{n}} \tanh (n x) \leq \frac{1}{\sqrt{n}} \forall x \in \mathbb{R}
$$

Thus it equicontinuous by the Arzéla-Ascoli Theorem. A more handson approach would be to observe that

$$
\left|\frac{1}{\sqrt{n}} \tanh (n x)-\frac{1}{\sqrt{n}} \tanh (n y)\right| \leq \frac{1}{\sqrt{n}}
$$

and that

$$
\left\|\frac{d}{d x} \frac{1}{\sqrt{n}} \tanh (n x)\right\|_{\infty}=\left\|\sqrt{n}\left[1-\tanh ^{2}(n x)\right]\right\|_{\infty} \leq \sqrt{n} .
$$

Latter implies that

$$
\left|\frac{1}{\sqrt{n}} \tanh (n x)-\frac{1}{\sqrt{n}} \tanh (n y)\right| \leq \sqrt{n}|x-y|
$$

and thus

$$
\begin{aligned}
&\left|\frac{1}{\sqrt{n}} \tanh (n x)-\frac{1}{\sqrt{n}} \tanh (n y)\right|= \\
&\left|\frac{1}{\sqrt{n}} \tanh (n x)-\frac{1}{\sqrt{n}} \tanh (n y)\right|^{1 / 2}\left|\frac{1}{\sqrt{n}} \tanh (n x)-\frac{1}{\sqrt{n}} \tanh (n y)\right|^{1 / 2} \\
& \leq \frac{1}{n^{1 / 4}} n^{1 / 4}|x-y|^{1 / 2}=|x-y|^{1 / 2}
\end{aligned}
$$

which readily implies uniform equicontinuity.
8. Assume that the improper integral $\int_{0}^{\infty} \frac{f(x)}{x} d x$ exists and show that

$$
\int_{0}^{\infty} \frac{f(x y)}{x} d x=\int_{0}^{\infty} \frac{f(x)}{x} d x \forall y \in(0, \infty) .
$$

Solution:
The integration domain is invariant with respect to rescaling. Thus simple substitution gives

$$
\int_{0}^{\infty} \frac{f(x y)}{x} d x=\int_{0}^{\infty} \frac{f(x y)}{x y} d(x y)=\int_{0}^{\infty} \frac{f(z)}{z} d z
$$

To be more detailed, first observe that

$$
\int_{0}^{\infty} f(z) d z=\lim _{r \rightarrow 0} \int_{r}^{1} \frac{f(z)}{z} d z+\lim _{R \rightarrow \infty} \int_{1}^{R} \frac{f(z)}{z} d z
$$

and, then by change of variable, that

$$
\begin{aligned}
\int_{0}^{\infty} & f(z) d z=\lim _{r \rightarrow 0} \int_{r}^{1} \frac{f(x y)}{x y} d(x y)+\lim _{R \rightarrow \infty} \int_{1}^{R} \frac{f(x y)}{x y} d(x y) \\
& =\lim _{r \rightarrow 0} \int_{r / y}^{1 / y} \frac{f(x y)}{x} d x+\lim _{R \rightarrow \infty} \int_{1 / y}^{R / y} \frac{f(x y)}{x} d x=\int_{0}^{\infty} \frac{f(x y)}{x} d x .
\end{aligned}
$$

9. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a decreasing sequence of real-valued functions on $[a, b]$ which converges uniformly to $f_{\infty} \equiv 0$. Show that

$$
\sum_{n=1}^{\infty}(-1)^{n} f_{n}
$$

converges uniformly.
Solution:
Arguing just like in the case of numeric sequence we obtain that

$$
\left\|\sum_{j=n}^{m}(-1)^{j} f_{j}\right\|_{\infty} \leq\left\|f_{n}\right\|_{\infty}
$$

by virtue of the fact that the sequence is decreasing. Now the claim follows since the right-hand-side converges to 0 by assumption and the Cauchy criterion for series (that is, the sequence of partial sums is Cauchy).

