Final Examination

Print your name:
Print your ID \#:

You have 2 hours to solve the problems. Good luck!

1. Let $A \in \mathbb{R}^{n \times n}$ and show that the map

$$
\Phi: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R},(x, y) \mapsto y^{T} A x
$$

is differentiable and compute its derivative.
2. Let $f \in \mathrm{C}^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ and assume that it is convex, that is, that

$$
f((1-t) x+t y) \leq(1-t) f(x)+t f(y) \forall x, y \in \mathbb{R}^{n} \forall t \in[0,1] .
$$

Prove that $D^{2} f(x) \geq 0$ (positive definite) for every $x \in \mathbb{R}^{n}$.
3. Show that the system

$$
\begin{cases}e^{x+y+c} & =1 \\ \frac{1}{1+(x-1)^{2}+y^{2}} & =d+\frac{1}{2}\end{cases}
$$

has a unique small solution for every small $c, d \in \mathbb{R}$.
4. Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Show that

$$
M_{n-1}:=\left\{x \in \mathbb{R}^{n} \mid x^{T} A x=1\right\}
$$

is a $(n-1)$-dimensional C^{1}-manifold in \mathbb{R}^{n}.
5. Compute the volume of the set

$$
C:=\left\{(x, y, z) \mid 0 \leq x^{2}+y^{2} \leq z, 0 \leq z \leq 1\right\} .
$$

6. Find maxima and minima of the function $f(x, y, z)=4 y-2 z$ on the curve determined by

$$
2 x-y-z=2, x^{2}+y^{2}=1 .
$$

7. Compute the integral

$$
\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y
$$

8. Find maxima and minima of the function

$$
f(x, y)=x^{2} e^{-x^{2}-y^{2}},(x, y) \in \overline{\mathbb{B}}_{\mathbb{R}^{2}}(0,1)=\left\{\left.x \in \mathbb{R}^{n}| | x\right|_{2} \leq 1\right\}
$$

Indicate which maxima and minima are strict and which are not.
9. Can the surface parametrized by

$$
(s, t) \mapsto\left(s^{3}+t^{3}, s t, s^{3}-t^{3}\right), \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
$$

be represented as the graph of a function? If your answer is no, explain why. If it is yes, determine the function.

