Матн 205

Spring Term 2006

Final Examination

Print your name: ______

Print your ID #:

You have 2 hours to solve the problems. Good luck!

1. Let $A \in \mathbb{R}^{n \times n}$ and show that the map

$$\Phi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \ (x, y) \mapsto y^T A x$$

is differentiable and compute its derivative.

2. Let $f \in C^2(\mathbb{R}^n, \mathbb{R})$ and assume that it is convex, that is, that

$$f((1-t)x+ty) \le (1-t)f(x) + tf(y) \,\forall x, y \in \mathbb{R}^n \,\forall t \in [0,1].$$

Prove that $D^2 f(x) \ge 0$ (positive definite) for every $x \in \mathbb{R}^n$.

3. Show that the system

$$\begin{cases} e^{x+y+c} &= 1\\ \frac{1}{1+(x-1)^2+y^2} &= d+\frac{1}{2} \end{cases}$$

has a unique small solution for every small $c, d \in \mathbb{R}$.

4. Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Show that

$$M_{n-1} := \{ x \in \mathbb{R}^n \, | \, x^T A x = 1 \}$$

is a (n-1)-dimensional C¹-manifold in \mathbb{R}^n .

5. Compute the volume of the set

$$C := \{(x, y, z) \mid 0 \le x^2 + y^2 \le z , \ 0 \le z \le 1\}.$$

6. Find maxima and minima of the function f(x, y, z) = 4y - 2z on the curve determined by

$$2x - y - z = 2$$
, $x^2 + y^2 = 1$.

7. Compute the integral

$$\int_0^1 \int_{3y}^3 e^{x^2} \, dx \, dy \, dx \, dy$$

8. Find maxima and minima of the function

$$f(x,y) = x^2 e^{-x^2 - y^2}, \ (x,y) \in \overline{\mathbb{B}}_{\mathbb{R}^2}(0,1) = \{x \in \mathbb{R}^n \mid |x|_2 \le 1\}.$$

Indicate which maxima and minima are strict and which are not.

9. Can the surface parametrized by

$$(s,t)\mapsto (s^3+t^3,st,s^3-t^3),\ \mathbb{R}^2\to\mathbb{R}^3$$

be represented as the graph of a function? If your answer is no, explain why. If it is yes, determine the function.