Final Examination-Solutions

1. Let $A \in \mathbb{R}^{n \times n}$ and show that the map

$$
\Phi: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R},(x, y) \mapsto y^{T} A x
$$

is differentiable and compute its derivative.
Solution: Let $h=\left(h_{1}, h_{2}\right) \in \mathbb{R}^{2 n}$ be given and consider

$$
\left(y+h_{2}\right)^{T} A\left(x+h_{1}\right)=y^{T} A x+\left[h_{2}^{T} A x+y^{T} A h_{1}\right]+h_{2}^{T} A h_{1} .
$$

Since $\left|h_{2}^{T} A h_{1}\right| \leq c|h|_{2}^{2}$, it follows that

$$
\Phi\left(x+h_{1}, y+h_{2}\right)-\Phi(x, y)-\left[h_{2}^{T} A x+y^{T} A h_{1}\right]=o\left(|h|_{2}\right)
$$

and therefore the derivative is given by

$$
\begin{array}{r}
D \Phi: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R},(x, y) \mapsto D \Phi(x, y) \\
\text { for } D \Phi(x, y): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}, h \mapsto h_{2}^{T} A x+y^{T} A h_{1} .
\end{array}
$$

2. Let $f \in \mathrm{C}^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ and assume that it is convex, that is, that

$$
f((1-t) x+t y) \leq(1-t) f(x)+t f(y) \forall x, y \in \mathbb{R}^{n} \forall t \in[0,1] .
$$

Prove that $D^{2} f(x) \geq 0$ (positive definite) for every $x \in \mathbb{R}^{n}$.
Solution: The assumption implies that the real real-valued function

$$
\phi_{x, y}:[0,1] \rightarrow \mathbb{R}, t \mapsto f((1-t) x+t y)
$$

is convex and therefore satisfies $\phi_{x, y}^{\prime \prime} \geq 0$. Since

$$
\phi_{x, y}^{\prime \prime}(t)=(y-x)^{T} D^{2} f((1-t) x+t y)(y-x)
$$

is valid for any choice of $x, y \in \mathbb{R}^{n}$ it follows that

$$
h^{T} D^{2} f((1-t) x+t y) h \geq 0 \forall h \in \mathbb{R}^{n}
$$

and therefore the claim.
3. Show that the system

$$
\begin{cases}e^{x+y+c} & =1 \\ \frac{1}{1+(x-1)^{2}+y^{2}} & =d+\frac{1}{2}\end{cases}
$$

has a unique small solution for every small $c, d \in \mathbb{R}$.
Solution: Rewrite the system as

$$
\begin{cases}e^{x+y} & =e^{-c} \\ \frac{1}{1+(x-1)^{2}+y^{2}} & =d+\frac{1}{2}\end{cases}
$$

and observe that the function f given by left-hand-side evaluated at $(0,0)$ gives $\left(1, \frac{1}{2}\right)$ for $c=d=0$. Since

$$
D f(0,0)=\left[\begin{array}{cc}
1 & 1 \\
-\frac{1}{2} & 0
\end{array}\right]
$$

is invertible, the claim is a direct consequence of the inverse function theorem.
4. Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Show that

$$
M_{n-1}:=\left\{x \in \mathbb{R}^{n} \mid x^{T} A x=1\right\}
$$

is a $(n-1)$-dimensional C^{1}-manifold in \mathbb{R}^{n}.
Solution: The first derivative of the map $\phi=\left[x \mapsto x^{T} A x\right]$ is given by

$$
D \phi(x)=2 x^{T} A
$$

and, since A is invertible, it can only vanish for $x=0 \notin M_{n-1}$. Hence the claim follows from the regular value theorem.
5. Compute the volume of the set

$$
C:=\left\{(x, y, z) \mid 0 \leq x^{2}+y^{2} \leq z, 0 \leq z \leq 1\right\} .
$$

Solution: The volume is given by

$$
\int_{C} 1 d(x, y, z)
$$

By using cylindrical coordinates, the change of variables theorem gives

$$
\int_{C} 1 d(x, y, z)=\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{\sqrt{z}} r d r d \phi d z=\frac{\pi}{2}
$$

6. Find maxima and minima of the function $f(x, y, z)=4 y-2 z$ on the curve determined by

$$
2 x-y-z=2, x^{2}+y^{2}=1
$$

Solution: Introduce the function

$$
H(x, y, z, \lambda, \mu):=4 y-2 z+\lambda(2 x-y-z-2)+\mu\left(x^{2}+y^{2}-1\right) .
$$

Its critical points satisfy

$$
\begin{cases}2 \lambda+2 \mu x & =0 \\ 4-\lambda+2 \mu y & =0 \\ -2-\lambda & =0 \\ 2 x-y-z-2 & =0 \\ x^{2}+y^{2} & =1\end{cases}
$$

Since $\lambda=-2$ by the third equation, the first and the second imply that x, y, μ are all different from zero. It follows that $x=\frac{2}{\mu}$ and that $y=-\frac{3}{\mu}$. The last equation then gives $\mu= \pm \sqrt{13}$. Finally the solutions are

$$
(x, y, z)=\left(\pm \frac{2}{\sqrt{13}}, \mp \frac{3}{\sqrt{13}},-2 \pm \frac{7}{\sqrt{13}}\right) .
$$

Since the curve determined by the two equations is closed and bounded, it is also compact. The function f therefore takes on both its maximum and its minimum. Evaluation at the two points just computed reveals that $\left(\frac{2}{\sqrt{13}},-\frac{3}{\sqrt{13}},-2+\frac{7}{\sqrt{13}}\right)$ is the point of minimum and the other is the point of maximum.
7. Compute the integral

$$
\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y
$$

Solution: Interchanging the order of integration we obtain

$$
\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y=\int_{0}^{3} \int_{0}^{x / 3} e^{x^{2}} d y d x
$$

Then

$$
\int_{0}^{3} \int_{0}^{x / 3} e^{x^{2}} d y d x=\frac{1}{3} \int_{0}^{3} x e^{x^{2}} d x=\frac{1}{6} \int_{0}^{9} e^{z} d z=\frac{1}{6}\left(e^{9}-1\right)
$$

8. Find maxima and minima of the function

$$
f(x, y)=x^{2} e^{-x^{2}-y^{2}},(x, y) \in \overline{\mathbb{B}}_{\mathbb{R}^{2}}(0,1)=\left\{\left.x \in \mathbb{R}^{n}| | x\right|_{2} \leq 1\right\}
$$

Indicate which maxima and minima are strict and which are not.
Solution: Computing the gradient of f and looking for critical points gives

$$
\begin{cases}2 x\left(1-x^{2}\right) & =0 \\ -2 y x^{2} & =0\end{cases}
$$

from which follows that

$$
(x, y)=(0, y) \text { for } y \in[-1,1] \text { or }(x, y)=(\pm 1,0)
$$

At the points $(0, y)$ the nonnegative function f vanishes. These points are therefore minima and are clearly non strict. At the other two points the function value is $\frac{1}{e}$. Since the function must assume its maximum, this has to occur there. Both maxima are strict.
9. Can the surface parametrized by

$$
(s, t) \mapsto\left(s^{3}+t^{3}, s t, s^{3}-t^{3}\right), \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
$$

be represented as the graph of a function? If your answer is no, explain why. If it is yes, determine the function.
Solution: Consider the system

$$
\left\{\begin{array}{l}
s^{3}+t^{3}=u \\
s^{3}-t^{3}=v
\end{array}\right.
$$

and observe that it is always uniquely solvable with solution

$$
(s, t)=\left(\left(\frac{u+v}{2}\right)^{\frac{1}{3}},\left(\frac{u-v}{2}\right)^{\frac{1}{3}}\right) .
$$

The surface is therefore the graph of the function

$$
(u, v) \mapsto\left(\frac{u^{2}-v^{2}}{4}\right)^{\frac{1}{3}} .
$$

