Practice Final

1. [Least squares] Given points $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}, i=1, \ldots, n$, find the straight line $y=m x+b$ that best fits these points in that it minimizes

$$
f(m, b):=\sum_{i=1}^{n}\left(m x_{i}+b-y_{i}\right)^{2} .
$$

Show that such a line always exists regardless of the given set of points.
2. Find the points on the ellipse $x^{2}+2 y^{2}=1$ closest to and farthest from the origin.
3. Find an equation for the line tangent to the intersection curve of the surfaces $x^{3}+3 x^{2} y^{2}+y^{2}+4 x y-z^{2}=0$ and $x^{2}+y^{2}+z^{2}=11$ at the point ($1,1,3$).
4. Consider the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto x^{3}+x y+y^{3}+1
$$

and find the points $(x, y) \in \mathbb{R}^{2}$ for which the set $f^{-1}(f(x, y))$ is a 1 -dimensional manifold embedded in \mathbb{R}^{2}. Draw the set of points for which that is not the case.
5. Give a quadratic approximation to $f(x, y)=e^{x} \cos (y),(x, y) \in \mathbb{R}^{2}$, at the origin.

Not due.

