Practice Final

1. [Least squares] Given points $(x_i, y_i) \in \mathbb{R}^2$, i = 1, ..., n, find the straight line y = mx+b that best fits these points in that it minimizes

$$f(m,b) := \sum_{i=1}^{n} (mx_i + b - y_i)^2.$$

Show that such a line always exists regardless of the given set of points.

- 2. Find the points on the ellipse $x^2 + 2y^2 = 1$ closest to and farthest from the origin.
- 3. Find an equation for the line tangent to the intersection curve of the surfaces $x^3 + 3x^2y^2 + y^2 + 4xy z^2 = 0$ and $x^2 + y^2 + z^2 = 11$ at the point (1, 1, 3).
- 4. Consider the function

 $f: \mathbb{R}^2 \to \mathbb{R}, \ (x, y) \mapsto x^3 + xy + y^3 + 1$

and find the points $(x, y) \in \mathbb{R}^2$ for which the set $f^{-1}(f(x, y))$ is a 1-dimensional manifold embedded in \mathbb{R}^2 . Draw the set of points for which that is not the case.

5. Give a quadratic approximation to $f(x,y) = e^x \cos(y), (x,y) \in \mathbb{R}^2$, at the origin.