Assignment 18

1. Compute the gradient of the functions defined by

$$f(x,y) = \begin{cases} x^2 y^2 \log(x^2 + y^2), & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
$$g(x,y) = \begin{cases} xy \sin(\frac{1}{x^2 + y^2}), & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

where it exists.

2. Assume that

$$f(y) = b + A(y - x) + o(|x - y|_2) \text{ as } y \to x$$

for some $f : \mathbb{R}^n \to \mathbb{R}^m$ with $m, n \ge 1$, $b \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$. Show that b and A are uniquely determined by the validity of the asymptotic relation.

3. Let $f \in C^1(D, \mathbb{R}^m)$ for some $D \stackrel{o}{\subset} \mathbb{R}^n$. Show that there exists a constant M > 0 such that

$$|f(x) - f(y)| \le M |x - y|$$

for y in a neighborhood of x.

- 4. Let $f \in C^1(D, \mathbb{R})$ for some $D \subset \mathbb{R}^n$. Fix $x \in D$ and assume that $\nabla f(x) \neq 0$. Show that $\nabla f(x)$ points in the direction of maximal growth of f.
- 5. Consider the map

$$\phi: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}, \ A \mapsto A^3$$

and show that it is differentiable. What is its derivative $D\phi(A)$ at a point A? Assume n > 1.

Homework due by Thursday, April 20 2006