Assignment 18

1. Compute the gradient of the functions defined by

$$
\begin{gathered}
f(x, y)= \begin{cases}x^{2} y^{2} \log \left(x^{2}+y^{2}\right), & (x, y) \neq(0,0) \\
0, & (x, y)=(0,0)\end{cases} \\
g(x, y)= \begin{cases}x y \sin \left(\frac{1}{x^{2}+y^{2}}\right), & (x, y) \neq(0,0) \\
0, & (x, y)=(0,0)\end{cases}
\end{gathered}
$$

where it exists.
2. Assume that

$$
f(y)=b+A(y-x)+o\left(|x-y|_{2}\right) \text { as } y \rightarrow x
$$

for some $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $m, n \geq 1, b \in \mathbb{R}^{m}$ and $A \in \mathbb{R}^{m \times n}$. Show that b and A are uniquely determined by the validity of the asymptotic relation.
3. Let $f \in \mathrm{C}^{1}\left(D, \mathbb{R}^{m}\right)$ for some $D \stackrel{o}{\subset} \mathbb{R}^{n}$. Show that there exists a constant $M>0$ such that

$$
|f(x)-f(y)| \leq M|x-y|
$$

for y in a neighborhood of x.
4. Let $f \in \mathrm{C}^{1}(D, \mathbb{R})$ for some $D \stackrel{o}{\subset} \mathbb{R}^{n}$. Fix $x \in D$ and assume that $\nabla f(x) \neq 0$. Show that $\nabla f(x)$ points in the direction of maximal growth of f.
5. Consider the map

$$
\phi: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}, A \mapsto A^{3}
$$

and show that it is differentiable. What is its derivative $D \phi(A)$ at a point A ? Assume $n>1$.

