Матн 205

Assignment 19

1. Consider the function $f:\mathbb{R}^2\to\mathbb{R}$ given by

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

and compute its mixed second derivatives.

2. Denote $\mathbb{R}^n \setminus \{0\}$ by $\dot{\mathbb{R}}^n$. A function $f : \dot{\mathbb{R}}^n \to \mathbb{R}$ is called homogeneous of degree k if

$$f(tx) = t^k f(x), \ t > 0, \ x \in \dot{\mathbb{R}}^n.$$

Show that

$$\nabla f(x) \cdot x = kf(x)$$

if f is differentiable.

3. Let $f \in C^1(D, \mathbb{R})$ for some convex $D \stackrel{o}{\subset} \mathbb{R}^n$ and $x, y \in D$. Show that there exists $\xi \in D$ such that

$$f(y) - f(x) = \nabla f(\xi) \cdot (y - x).$$

Why is convexity of D needed?

4. Classify the critical points of

$$f: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto x^2 + y^2 - x^4 - y^4.$$

5. Let $f \in C^3(\mathbb{R}^n, \mathbb{R})$ and $x \in \mathbb{R}^n$ be such that

$$f(x) = 0$$
, $\nabla f(x) = 0$, $D^2 f(x) = 0$.

Assuming that there is $\alpha \in \mathbb{N}^n$ with $|\alpha| = 3$ and $\partial^{\alpha} f(x) \neq 0$, what can you say about the critical point x?

Homework due by Thursday, April 27 2006