Assignment 21

1. Consider n-dimensional polar coordinates as given by

$$
\begin{aligned}
x_{1} & =r \cos \left(\varphi_{1}\right) \\
x_{2} & =r \sin \left(\varphi_{1}\right) \cos \left(\varphi_{2}\right) \\
x_{3} & =r \sin \left(\varphi_{1}\right) \sin \left(\varphi_{2}\right) \cos \left(\varphi_{3}\right) \\
& \vdots \\
x_{n-1} & =r \sin \left(\varphi_{1}\right) \ldots \sin \left(\varphi_{n-2}\right) \cos \left(\varphi_{n-1}\right) \\
x_{n} & =r \sin \left(\varphi_{1}\right) \ldots \sin \left(\varphi_{n-2}\right) \sin \left(\varphi_{n-2}\right)
\end{aligned}
$$

for

$$
\begin{aligned}
& \left(r, \varphi_{1}, \ldots, \varphi_{n-2}, \varphi_{n-1}\right) \in \\
& \quad D:=(0, \infty) \times(0, \pi) \times \cdots \times(0, \pi) \times(-\pi, \pi) .
\end{aligned}
$$

Show that the change of variables map g defined by

$$
\left(r, \varphi_{1}, \ldots, \varphi_{n-2}, \varphi_{n-1}\right) \mapsto\left(x_{1}, \ldots, x_{n}\right), D \rightarrow \mathbb{R}^{n}
$$

is one-to-one and onto $\mathbb{R}^{n} \backslash\{0\}$. Prove that

$$
\begin{aligned}
& \operatorname{det}\left[D g\left(r, \varphi_{1}, \ldots, \varphi_{n-2}, \varphi_{n-1}\right)\right] \\
& \quad=r^{n-1}\left[\sin \left(\varphi_{1}\right)\right]^{n-2}\left[\sin \left(\varphi_{2}\right)\right]^{n-3} \cdots \sin \left(\varphi_{n-2}\right)
\end{aligned}
$$

2. Let $f \in \mathrm{C}\left(\overline{\mathbb{B}}_{\mathbb{R}^{n}}(0,1), \mathbb{R}\right)$ satisfy

$$
f(x)=g\left(|x|_{2}\right)
$$

for some $g \in \mathrm{C}([0,1], \mathbb{R})$. Compute the integral of f over the unit ball $\mathbb{B}_{\mathbb{R}^{n}}(0,1)$.
3. Compute the integral of the function f defined by

$$
f(x, y)= \begin{cases}x+y, & (x, y) \in[0,1] \times[0,1] \text { s.t. } x^{2} \leq y \leq 2 x^{2} \\ 0, & \text { otherwise }\end{cases}
$$

4. Determine the volume of the region between the sphere given by the solution set of $x^{2}+y^{2}+z^{2}=8$ and the paraboloid given by $4 z=x^{2}+y^{2}+4$. [Hint: Use cylindrical coordinates.]
5. Let $g: D \rightarrow \mathbb{R}^{n}$ be one-to-one for $D \stackrel{o}{\subset} \mathbb{R}^{n}$. Assume that

$$
f \in \mathrm{C}^{1}\left(\bar{D}, \mathbb{R}^{n}\right)
$$

Let $\left\{C_{j} \mid j=1, \ldots, N\right\}$ be a collection of disjoint hypercubes of side $\delta>0$ fully contained in D stemming from a uniform partition of a parallelopiped containing D. Show that

$$
\sum_{j=1}^{N} \operatorname{vol}\left[g\left(C_{j}\right)\right] \rightarrow \operatorname{vol}[g(D)] \text { as } \delta \rightarrow 0
$$

