1. Let $f, g \in C^1(\mathbb{R}^2, \mathbb{R})$ be given. Find necessary conditions for the existence of $u \in C^2(\mathbb{R}^2, \mathbb{R})$ such that

$$\nabla u = (f,g) \,.$$

Show that those conditions are also sufficient and derive a formula describing u in terms of f and g.

2. Consider the system

$$\begin{cases} x^2 + y^2 - u^2 - xv = 0\\ xy + uv - v^2 = 0 \end{cases}$$

and determine the points $(x, y, u, v) \in \mathbb{R}^4$ where the system can be solved for (u, v) for sure.

3. Assume that $A \in \mathbb{R}^{n \times n}$ and ||A|| < 1. Show that

$$\sum_{n=0}^{\infty} A^n$$

is norm-convergent and that its value is $(\mathrm{id}_{\mathbb{R}^n} - A)^{-1}$. Use this to prove that $\mathcal{GL}_n(\mathbb{R}) \stackrel{o}{\subset} \mathbb{R}^{n \times n}$.

4. Prove that there is a neighborhhod U of $id_{\mathbb{R}^n}$ in which the equation

$$X^2 = M$$

has a unique solution X close to the identity for each $M \in U$. Compute the derivative of

$$f: U \to \mathbb{R}^{n \times n}, \ M \mapsto X =: \sqrt{M}.$$

5. Let $F \in C^2(D, \mathbb{R}^n)$ for some $D \stackrel{o}{\subset} \mathbb{R}^n$. In order to solve F(x) = 0 one can use Newton iteration

$$x_{n+1} = x_n - DF(x_n)^{-1}F(x_n)$$

with some initial guess $x_0 \in D$. Let $z \in D$ be a non-critical zero of F and prove that $(x_n)_{n \in \mathbb{N}}$ converges to z if the initial guess is chosen close enough to z.

Homework due by Thursday, May 18 2006