1. Let a unit circle C roll on the x-axis from left to right. Find a parametrization for the trajectory followed by any arbitrary point $P \in C$ during this motion.

2. Find a parametric representation for a “circular doughnut” (torus).

3. Give concrete examples for all possible ways an immersion can fail to be an embedding.

4. Let $M_m \subset \mathbb{R}^n$ be an m-dimensional C^1-manifold. Show that the tangent space to M_m at any point $x \in M_m$ does not depend on the choice of local representation (parametrization) g for the manifold.

5. Prove that the unit sphere
 \[S^{n-1} = \{ x \in \mathbb{R}^n \mid |x|_2 = 1 \} \]
 is a $(n-1)$-dimensional C^1-manifold in \mathbb{R}^n. Characterize its tangent space at every point.