Assignment 24

1. For which values of the constants do the following equations determine a C^{1}-surface?
(a) $x^{2}+y^{2}-z^{2}=c_{1}, x^{2}+y^{2}-z^{2}=c_{2}$.
(b) $x y z=c$.

Compute tangent and normal spaces of these surfaces at each point where possible.
2. Let $M \subset \mathbb{R}^{n}$ be a m-dimensional C^{1}-manifold and $f \in \mathrm{C}^{1}(M, \mathbb{R})$. Show that the function f possesses a smooth extension F to a neighborhood $U_{x} \in \mathcal{U}_{\mathbb{R}^{n}}(x)$ for every point $x \in M$.
3. Let $m \leq n$ and show that the set a $m \times n$-matrices of rank m is open in the space $\mathbb{R}^{m \times n}$.
4. Show that $\left\{M \in \mathbb{R}^{n \times n} \mid \operatorname{det}(M)=1\right\}$ is a C^{1}-manifold of dimension $n^{2}-1$.
5. Find maxima and minima of $f(x, y, z)=x^{2}+4 y^{2}-z^{2}$ on the unit sphere \mathbb{S}^{2}.

