Assignment 24

For which values of the constants do the following equations determine a C¹-surface?
(a) x² + y² - z² = c₁, x² + y² - z² = c₂.
(b) xyz = c.

Compute tangent and normal spaces of these surfaces at each point where possible.

- 2. Let $M \subset \mathbb{R}^n$ be a *m*-dimensional C¹-manifold and $f \in C^1(M, \mathbb{R})$. Show that the function f possesses a smooth extension F to a neighborhood $U_x \in \mathcal{U}_{\mathbb{R}^n}(x)$ for every point $x \in M$.
- 3. Let $m \leq n$ and show that the set a $m \times n$ -matrices of rank m is open in the space $\mathbb{R}^{m \times n}$.
- 4. Show that $\{M \in \mathbb{R}^{n \times n} \mid \det(M) = 1\}$ is a C¹-manifold of dimension $n^2 1$.
- 5. Find maxima and minima of $f(x, y, z) = x^2 + 4y^2 z^2$ on the unit sphere \mathbb{S}^2 .