Midterm Examination

Print your name: \qquad
\qquad

Print your ID \#: \qquad

You have 50 minutes to solve the problems. Good luck!

1. Show that $\mathbb{R} \backslash\{0\}$ and \mathbb{R} have the same cardinality by explicitly constructing a bijection between them.
2. Given a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of reals, define

$$
A:=\left\{x \in \mathbb{R} \mid x \text { is an accumulation point of }\left(x_{n}\right)_{n \in \mathbb{N}}\right\} .
$$

Prove that A is closed.
3. Let two subsets $A, B \subset \mathbb{R}$ be given. Show that

$$
\overline{A \cap B} \subset \bar{A} \cap \bar{B}
$$

and give an example which shows that the inclusion is proper in general.
4. Let C_{1} and C_{2} be compact subsets of \mathbb{R}. Prove that

$$
C_{1}+C_{2}:=\left\{x+y \mid x \in C_{1}, y \in C_{2}\right\}
$$

is compact, too.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly continuous. Is f^{2} continuous? Is it uniformly continuous? If your answer is yes, give a proof. If it is no, give a counterexample.

