Midterm Examination

Print your name:
Print your ID \#: \qquad

You have 50 minutes to solve the problems. Good luck!

1. Let $\alpha \in \mathrm{B}([a, b])$ for $a<b \in \mathbb{R}$ and assume that

$$
\int_{a}^{b} f(x) d \alpha(x)=0
$$

for any choice of monotone function $f \in \mathrm{~B}([a, b])$. Show that α must be constant.
2. Let $f \in \mathcal{R}([a, b])$ and compute

$$
\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a+k \frac{b-a}{n}\right)
$$

justifying why convergence actually takes place. Use the result to show that

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n}{k^{2}+n^{2}}=\frac{\pi}{4}
$$

3. Let $0 \leq f \in \mathrm{C}([a, b], \mathbb{R})$ and show that

$$
\lim _{n \rightarrow \infty}\left(\int_{a}^{b} f(x)^{n} d x\right)^{\frac{1}{n}}=\max _{x \in[a, b]} f(x) .
$$

4. Consider the sequence of functions $\left(f_{n}\right)_{n \in \mathbb{N}}$ given by

$$
f_{n}(x):=\sqrt{x^{2}+\frac{1}{n^{2}}}, x \in \mathbb{R}
$$

What is the pointwise limit of the sequence? Is the convergence uniform? Justify your answers.
5. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of increasing real-valued functions defined on the interval $[a, b]$ which converges pointwise to $f \in \mathrm{C}([a, b])$. Show that f is increasing and that the convergence is uniform.

