Midterm Examination

Print your name:
Print your ID \#: \qquad

You have 50 minutes to solve the problems. Good luck!

1. Let M be a complete metric space and $f: M \rightarrow M$ a contraction. Denoting by x_{0} the fixed point of f, prove that

$$
d\left(x, x_{0}\right) \leq \frac{1}{1-r} d(x, f(x))
$$

for any $x \in M$ where $r \in(0,1)$ is the Lipschitz constant of f.
2. Let $f, g \in \mathrm{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ be positive functions. Show that $f g \in \mathrm{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ and compute $D(f g)$. Show that, if $f g$ attains a minimum at x, then $\nabla f(x)$ and $\nabla g(x)$ are linearly dependent.
3. Let $f \in \mathrm{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ and assume that

$$
x \in L:=f^{-1}(5):=\left\{y \in \mathbb{R}^{n} \mid f(y)=5\right\} .
$$

If $\gamma \in \mathrm{C}^{1}((0,1), L)$ is a curve through x, show that $\nabla f(x)$ is orthogonal to the curve γ at x.
4. Let $f \in \mathrm{C}^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ with $D^{2} f(x)>0$ for some $x \in \mathbb{R}^{n}$. Show that, in a neighborhood of x, the graph

$$
G_{f}:=\left\{(x, f(x)) \mid x \in \mathbb{R}^{n}\right\}
$$

of f lies above its tangent plane at x.
5. Let $f \in \mathrm{C}([a, b], \mathbb{R})$ and $g \in \mathrm{C}([c, d], \mathbb{R})$. Show that

$$
\int_{R} f(x) g(y) d(x, y)=\left[\int_{a}^{b} f(x) d x\right]\left[\int_{c}^{d} g(x) d x\right]
$$

for $R:=[a, b] \times[c, d]$.

