
Math 205 Spring Term 2006

Midterm Examination - Solutions

1. Let M be a complete metric space and f : M → M a contraction.
Denoting by x0 the fixed point of f , prove that

d(x, x0) ≤
1

1− r
d(x, f(x))

for any x ∈ M where r ∈ (0, 1) is the Lipschitz constant of f .
Solution: Since f(x0) = x0 we see that

d(f(x), x0) = d(f(x), f(x0)) ≤ r d(x, x0)

and, therefore, by the triangular inequality

d(x, x0) ≤ d(x, f(x)) + d(f(x), x0) ≤ d(f(x), x) + rd(x, x0)

which readily implies the claim.

2. Let f, g ∈ C1(Rn, R) be positive functions. Show that fg ∈ C1(Rn, R)
and compute D(fg). Show that, if fg attains a minimum at x, then
∇f(x) and ∇g(x) are linearly dependent.
Solution: By assumption we have that both f and g possess continuous
partial derivatives in all direction. Then

∂j(fg)(x) = f(x)∂jg(x) + g(x)∂jf(x) , j = 1, . . . , n

and thus all partial derivatives of fg exist and are continuous. We
conclude that fg is differentiable and, by the above formula for its
partial derivatives, we infer that

∇(fg)(x) = f(x)∇g(x) + g(x)∇f(x) .

At a point of minimum we would have that

0 = ∇(fg)(x) = f(x)∇g(x) + g(x)∇f(x)

which would make the gradients linearly dependent since f and g never
vanish.
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3. Let f ∈ C1(Rn, R) and assume that

x ∈ L := f−1(5) := {y ∈ Rn | f(y) = 5} .

If γ ∈ C1
(
(0, 1), L

)
is a curve through x, show that∇f(x) is orthogonal

to the curve γ at x.
Solution: Let γ be a curve through x with the above properties and
say that γ(0.5) = x. Then

f
(
γ(t)

)
= 5 ∀ t ∈ (0, 1)

and therefore, by taking one derivative,

∇f
(
γ(t)

)
· γ̇(t) = 0 ∀ t ∈ (0, 1) .

In particular we have that

∇f(x) · γ̇(0.5) = 0

which gives the desired result since γ̇(0.5) is clearly tangent to the
curve at x.

4. Let f ∈ C2(Rn, R) with D2f(x) > 0 for some x ∈ Rn. Show that, in a
neighborhood of x, the graph

Gf := {(x, f(x)) |x ∈ Rn}

of f lies above its tangent plane at x.
Solution: Since D2f(x) is positive definite and D2f is continuous, we
can find δ > 0 such that D2f(y) is still positive if |y − x|2 ≤ δ. Then,
by Taylor expansion with remainder, we obtain that

f(y) = f(x) + Df(x)(y − x)︸ ︷︷ ︸
equation for tangent plane

+
1
2
(y − x)T D2f(z)(y − x)

for any y ∈ B(x, δ) and some z on the segment between x and y. Thus
the claim follows since

1
2
(y − x)T D2f(z)(y − x) > 0

regardless of y, z ∈ B(x, δ).
Alternatively, consider the function

g : Rn → R , y 7→ f(y)− f(x)−Df(x)(y − x) .
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If this map is positive in a neighborhood of x, the claim follows. But
g has a minimum at x where g(x) = 0 since

Dg(x) = 0 and D2f(x) > 0 by assumption.

5. Let f ∈ C([a, b], R) and g ∈ C([c, d], R). Show that∫
R
f(x)g(y) d(x, y) = [

∫ b

a
f(x) dx][

∫ d

c
g(x) dx]

for R := [a, b]× [c, d].
Solution: Since f and g are integrable, we can find, for given ε > 0,
partitions Px ∈ P(a, b) and Py ∈ P(c, d) such that

|Sf (Px)− If | ≤
ε

If + Ig + 1
,

|Sg(Py)− Ig| ≤
ε

If + Ig + 1
,

where If =
∫ b
a f(x) dx and Ig =

∫ d
c g(x) dx. Then

∣∣ Nx∑
i=1

Ny∑
j=1

f(ξi)g(ηj)(ξi − ξi−1)(ηj − ηj−1)− IfIg

∣∣
≤ |

Nx∑
i=1

f(ξi)(ξi − ξi−1)||Sg(Py)|+ |If ||
Ny∑
j=1

g(ηj)(ηj − ηj−1)| ≤ ε .

Another more direct proof is based on∫
R

F (x, y) d(x, y) =
∫ b

a

∫ d

c
F (x, y) dy dx ,

which we proved in class, with F (x, y) = f(x)g(y).
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