Midterm Examination - Solutions

1. Let M be a complete metric space and $f: M \rightarrow M$ a contraction. Denoting by x_{0} the fixed point of f, prove that

$$
d\left(x, x_{0}\right) \leq \frac{1}{1-r} d(x, f(x))
$$

for any $x \in M$ where $r \in(0,1)$ is the Lipschitz constant of f.
Solution: Since $f\left(x_{0}\right)=x_{0}$ we see that

$$
d\left(f(x), x_{0}\right)=d\left(f(x), f\left(x_{0}\right)\right) \leq r d\left(x, x_{0}\right)
$$

and, therefore, by the triangular inequality

$$
d\left(x, x_{0}\right) \leq d(x, f(x))+d\left(f(x), x_{0}\right) \leq d(f(x), x)+r d\left(x, x_{0}\right)
$$

which readily implies the claim.
2. Let $f, g \in \mathrm{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ be positive functions. Show that $f g \in \mathrm{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ and compute $D(f g)$. Show that, if $f g$ attains a minimum at x, then $\nabla f(x)$ and $\nabla g(x)$ are linearly dependent.
Solution: By assumption we have that both f and g possess continuous partial derivatives in all direction. Then

$$
\partial_{j}(f g)(x)=f(x) \partial_{j} g(x)+g(x) \partial_{j} f(x), j=1, \ldots, n
$$

and thus all partial derivatives of $f g$ exist and are continuous. We conclude that $f g$ is differentiable and, by the above formula for its partial derivatives, we infer that

$$
\nabla(f g)(x)=f(x) \nabla g(x)+g(x) \nabla f(x)
$$

At a point of minimum we would have that

$$
0=\nabla(f g)(x)=f(x) \nabla g(x)+g(x) \nabla f(x)
$$

which would make the gradients linearly dependent since f and g never vanish.
3. Let $f \in \mathrm{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ and assume that

$$
x \in L:=f^{-1}(5):=\left\{y \in \mathbb{R}^{n} \mid f(y)=5\right\} .
$$

If $\gamma \in \mathrm{C}^{1}((0,1), L)$ is a curve through x, show that $\nabla f(x)$ is orthogonal to the curve γ at x.
Solution: Let γ be a curve through x with the above properties and say that $\gamma(0.5)=x$. Then

$$
f(\gamma(t))=5 \forall t \in(0,1)
$$

and therefore, by taking one derivative,

$$
\nabla f(\gamma(t)) \cdot \dot{\gamma}(t)=0 \forall t \in(0,1)
$$

In particular we have that

$$
\nabla f(x) \cdot \dot{\gamma}(0.5)=0
$$

which gives the desired result since $\dot{\gamma}(0.5)$ is clearly tangent to the curve at x.
4. Let $f \in \mathrm{C}^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ with $D^{2} f(x)>0$ for some $x \in \mathbb{R}^{n}$. Show that, in a neighborhood of x, the graph

$$
G_{f}:=\left\{(x, f(x)) \mid x \in \mathbb{R}^{n}\right\}
$$

of f lies above its tangent plane at x.
Solution: Since $D^{2} f(x)$ is positive definite and $D^{2} f$ is continuous, we can find $\delta>0$ such that $D^{2} f(y)$ is still positive if $|y-x|_{2} \leq \delta$. Then, by Taylor expansion with remainder, we obtain that

$$
f(y)=\underbrace{f(x)+D f(x)(y-x)}_{\text {equation for tangent plane }}+\frac{1}{2}(y-x)^{T} D^{2} f(z)(y-x)
$$

for any $y \in \mathbb{B}(x, \delta)$ and some z on the segment between x and y. Thus the claim follows since

$$
\frac{1}{2}(y-x)^{T} D^{2} f(z)(y-x)>0
$$

regardless of $y, z \in \mathbb{B}(x, \delta)$.
Alternatively, consider the function

$$
g: \mathbb{R}^{n} \rightarrow \mathbb{R}, y \mapsto f(y)-f(x)-D f(x)(y-x)
$$

If this map is positive in a neighborhood of x, the claim follows. But g has a minimum at x where $g(x)=0$ since

$$
D g(x)=0 \text { and } D^{2} f(x)>0 \text { by assumption. }
$$

5. Let $f \in \mathrm{C}([a, b], \mathbb{R})$ and $g \in \mathrm{C}([c, d], \mathbb{R})$. Show that

$$
\int_{R} f(x) g(y) d(x, y)=\left[\int_{a}^{b} f(x) d x\right]\left[\int_{c}^{d} g(x) d x\right]
$$

for $R:=[a, b] \times[c, d]$.
 partitions $P_{x} \in \mathcal{P}(a, b)$ and $P_{y} \in \mathcal{P}(c, d)$ such that

$$
\begin{aligned}
\left|S_{f}\left(P_{x}\right)-I_{f}\right| & \leq \frac{\varepsilon}{I_{f}+I_{g}+1} \\
\left|S_{g}\left(P_{y}\right)-I_{g}\right| & \leq \frac{\varepsilon}{I_{f}+I_{g}+1}
\end{aligned}
$$

where $I_{f}=\int_{a}^{b} f(x) d x$ and $I_{g}=\int_{c}^{d} g(x) d x$. Then

$$
\begin{aligned}
& \left|\sum_{i=1}^{N_{x}} \sum_{j=1}^{N_{y}} f\left(\xi_{i}\right) g\left(\eta_{j}\right)\left(\xi_{i}-\xi_{i-1}\right)\left(\eta_{j}-\eta_{j-1}\right)-I_{f} I_{g}\right| \\
& \quad \leq\left|\sum_{i=1}^{N_{x}} f\left(\xi_{i}\right)\left(\xi_{i}-\xi_{i-1}\right)\right|\left|S_{g}\left(P_{y}\right)\right|+\left|I_{f}\right|\left|\sum_{j=1}^{N_{y}} g\left(\eta_{j}\right)\left(\eta_{j}-\eta_{j-1}\right)\right| \leq \varepsilon .
\end{aligned}
$$

Another more direct proof is based on

$$
\int_{R} F(x, y) d(x, y)=\int_{a}^{b} \int_{c}^{d} F(x, y) d y d x
$$

which we proved in class, with $F(x, y)=f(x) g(y)$.

