Assignment 11

1. Let $0 \neq \alpha \in \mathbb{R}$ and consider the initial value problem for Euler's equation

$$
\sum_{k=1}^{n} x_{k} \partial_{x_{k}} u=\alpha u, u\left(x_{1}, \ldots, x_{n-1}, 1\right)=g\left(x_{1}, \ldots, x_{n-1}\right)
$$

Show that its solution satisfies the functional equation

$$
u(\lambda x)=\lambda^{\alpha} u(x), x \neq 0, \lambda>0
$$

What is the behavior of the solution at $x=0$?
2. Consider the quasilinear initial value problem

$$
\left\{\begin{aligned}
u_{t}+u u_{x} & =0, & & (t, x) \in(0, \infty) \times \mathbb{R} \\
u(0, x) & =g(x), & & x \in \mathbb{R}
\end{aligned}\right.
$$

Solve the equation and analyze the possible onset of singularities. What conditions on g would prevent the solution from developing singularities?
3. Let $u \in \mathrm{C}^{1}(\mathbb{B}(0,1))$ be a solution of

$$
a(x, y) u_{x}+b(x, y) u_{y}=-u
$$

and assume that $a(x, y) x+b(x, y) y>0$ for $(x, y) \in \mathbb{S}^{1}$. Show that $u \equiv 0$ then.
4. Consider the equation

$$
\frac{\partial R(u)}{\partial y}+\frac{\partial S(u)}{\partial x}=0
$$

Any function u with

$$
\int_{\mathbb{R}^{2}}\left[R(u) \phi_{y}+S(u) \phi_{x}\right] d(x, y)=0, \phi \in \mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{2}\right)
$$

is called weak solution. Assume that u is continuously differentiable away from some curve parametrized by $(s(y), y), y \in \mathbb{R}$ across which it has a jump discontinuity. Conclude that

$$
s^{\prime}(y)=\frac{S\left(u^{+}\right)-S\left(u^{-}\right)}{R\left(u^{+}\right)-R\left(u^{-}\right)}
$$

where $u^{ \pm}$indicate the one sided limits of u approaching the curve.
5. Consider the eikonal equation

$$
c^{2}\left(u_{x}^{2}+u_{y}^{2}\right)=1
$$

Let γ_{t} be the level line $[u(x, y)=t]$ of a solution u. Show that a point (x, y) moves in a direction perpendicular to γ_{t} at constant speed c (along a characteristic).

