Assignment 3

1. Let $C^{\infty}[-1,1] \ni a \ge a_0 > 0$ and $y \in [-1,1]$. Compute $G(\cdot,y)$ satisfying

$$-\partial_x (a(x)\partial_x G(\cdot, y)) = \delta_y$$

and G(-1,y) = G(1,y) = 0. Let $f \in L^1(-1,1)$ and show that u defined through

$$u(x) = \int_{-1}^{1} G(x, y) f(y) \, dy, \ x \in (-1, 1)$$

solves (in which sense?) the following boundary value problem

$$\begin{cases} -\partial_x (a(x)\partial_x u) = f(x), \ x \in (-1,1), \\ u(-1) = u(1) = 0. \end{cases}$$

2. Let $\omega \in \mathbb{R}$ and find the solution of

$$(\partial_x^2 + \omega^2)G = \delta \text{ in } \mathcal{D}'(\mathbb{R})$$

[Hint: Let G = Hf for $f \in C^{\infty}(\mathbb{R})$ and the Heaviside function H]

3. Let $T \in \mathcal{E}'(\mathbb{R}^n)$ with $\operatorname{supp}(T) = K$ be of finite order $m \in \mathbb{N}$. Show that

$$\langle T,\phi \rangle=0$$
 for any $\phi\in \mathcal{E}(\mathbb{R}^n)$ with $\partial^{\alpha}\phi\big|_K\equiv 0$ for $|\alpha|\leq m$

4. Let E be a given vector space. A function $p:E\to [0,\infty)$ is called seminorm if

$$p(x+y) \le p(x) + p(y)$$
 and $p(\alpha x) = |\alpha| p(x)$

for $x,y\in E$ and $\alpha\in\mathbb{K}$. A family of seminorms $\{p_\lambda:\lambda\in\Lambda\}$ is called *separating* if

$$p_{\lambda}(x) = 0$$
 for each $\lambda \in \Lambda$ implies $x = 0$.

Now, a set $X \subset E$ is called *open* if for each $x \in X$ there are finitely many $\lambda_j \in \Lambda$ and $\epsilon_j > 0$ such that

$$x + \bigcap_{j=1,\dots,m} p_{\lambda_j}^{-1}((0,\epsilon_j)) \subset X$$
.

Show that the collection of all open sets is a topology on E. E endowed with this topology is called *locally convex space*. A linear map

$$u: E \to E$$

is then continuous iff preimages of open sets are open. Find a characterization of continuity by means of inequalities for the seminorms

 p_{λ} . Prove that the space $\mathcal{E}(\Omega)$ defined in class is a locally convex space with seminorms

$$\left\{p_{K,m}\,:\,K=\bar{K}\subset\subset\Omega\,,\;m\in\mathbb{N}\right\}$$
 defined through $p_{K,m}(\varphi)=\sup_{x\in K,|\alpha|\leq m}\left|D^{\alpha}\varphi(x)\right|.$

5. Let $\psi \in \mathcal{D}(\mathbb{R}^n)$ with $\psi = 1$ on $\mathbb{B}(0,1)$ and define ψ_k through

$$\psi_k(x) = \psi(\frac{x}{k}), \ x \in \mathbb{R}^n.$$

Show that $\psi_k \to \mathbf{1}$ $(k \to \infty)$ in $\mathcal{E}(\mathbb{R}^n)$. Then prove that $\mathcal{D}(\mathbb{R}^n)$ is dense in $\mathcal{E}(\mathbb{R}^n)$ as well as $\mathcal{E}(\mathbb{R}^n)'$ in $\mathcal{D}(\mathbb{R}^n)'$.