Assignment 10

Let $\Omega \subset \mathbb{R}^n$ be open. A map $f : \Omega \times \mathbb{R} \to \mathbb{R}$ is called *Carathéodory function* whenever

(i) $f(\cdot, s) : \Omega \to \mathbb{R}$ is measurable for every $s \in \mathbb{R}$.

(ii) $f(x, \cdot) : \mathbb{R} \to \mathbb{R}$ is continuous for almost every $x \in \Omega$.

1. Let $f: \Omega \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function and $p, q \ge 1$. Assume that

$$|f(x,s)| \le c|s|^{p/q} + g(x)$$

for some $g \in L_q(\Omega)$. Prove that the Nemytzki operator (substitution operator) $N_f : L_p(\Omega) \to L_q(\Omega)$ defined through

$$(N_f u)(x) := f(x, u(x)), \ x \in \Omega$$

is well-defined, continuous and maps bounded sets onto bounded sets.

2. Let H be a Hilbert space. Prove that

$$x_n \to x, \ y_n \rightharpoonup y \ (n \to \infty) \Rightarrow (x_n | y_n) \to (x | y) \ (n \to \infty).$$

3. Let $\Omega \subset \mathbb{R}^n$ be a bounded, open set with smooth boundary. Prove that the equation

$$\begin{cases} -\triangle u = e^{-u} & \text{in } \Omega \,, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

possesses a solution.

- 4. (Kolmogoroff) Show that a subset $K \subset L_p(\mathbb{R}^n)$ $(1 \le p < \infty)$ is compact iff
 - (i) K is closed and bounded.

(ii) $\int_{|x|\geq N} |f(x)|^p dx \to 0$, $N \to \infty$, uniformly in $f \in K$.

(iii) $\int_{\mathbb{R}^n} |f(x+h) - f(x)|^p dx \to 0$, $|h| \to 0$, uniformly in $f \in K$. [Hint: Use the density of test functions in $\mathcal{L}_p(\mathbb{R}^n)$, the strong continuity of the translation semigroup on $\mathcal{L}_p(\mathbb{R}^n)$ and Arzéla-Ascoli.]

5. Let $1 \leq p < \infty$ and prove that

$$\left(\int_{\mathbb{R}^n} |u(x+h) - u(x)|^p \, dx\right)^{1/p} \le |h| \, \|u\|_{1,p}$$

for $u \in W_p^1(\mathbb{R}^n)$. Use this estimate and Kolmogoroff's characterization of compactness to show that $W_p^1(\Omega) \hookrightarrow L_p(\Omega)$ for $\Omega \subset \mathbb{R}^n$ open and bounded. Homework due by Wednesday, February 18 2015.