Assignment 8

1. Let \mathcal{A} be the general elliptic second order differential operator in divergence from on a bounded domain Ω with smooth boundary, that is,

$$\mathcal{A}u = -\nabla \cdot (A\nabla u) + (b|\nabla u) + cu$$

where the coefficients satisfy the assumptions of Chapter 8 of class. Let $\Phi \in \text{Diff}^2(\Omega, \widetilde{\Omega})$, that is, Φ is invertible and

$$\Phi \in \mathrm{C}^2(\Omega, \widetilde{\Omega}), \ \Psi := \Phi^{-1} \in \mathrm{C}^2(\widetilde{\Omega}, \Omega).$$

Letting $y := \Phi(x)$ and define $\tilde{u}(y) := u(\Psi(y))$, compute the operator $\tilde{\mathcal{A}}$ in the new variables, that is the operator satisfying

$$\mathcal{A}u = \mathcal{A}\tilde{u}$$
.

2. Prove that the Neumann problem

$$\begin{cases} -\triangle u &= f \text{ in } \Omega, \\ \partial_{\nu} u &= 0 \text{ on } \partial \Omega \end{cases}$$

on a bounded domain with smooth boundary has a solution if and only if $\int_{\Omega} f \, dx = 0$.

3. Let H(t, x) be the heat kernel (the fundamental solution for the heat equation introduced in class) and show that T defined through

$$\begin{cases} (T(t)u)(x) &:= \int_{\mathbb{R}^n} H(t, x - y)u(y) \, dy \,, \, x \in \mathbb{R}^n \\ T(0)u &:= u \end{cases}$$

is a C₀-semigroup of contractions on $L_2(\mathbb{R}^n)$ but NOT on $L_{\infty}(\mathbb{R}^n)$. A C₀-semigroup *T* on a Banach space *E* is called *analytic* if it allows for an analytic strongly continuous extension to a sector $\Sigma_{\delta} = [\arg(z) < \delta]$ of the complex plane for some $\delta \in (0, \pi/2]$, that is, if

- (i) $T(0) = \mathrm{id}_E$, $T(z_1 + z_2) = T(z_1)T(z_2)$, $z_1, z_2 \in \Sigma_{\delta}$.
- (ii) $T: \Sigma_{\delta} \to \mathcal{L}(E)$ is analytic.
- (iii) $\lim_{\Sigma_{\delta} \ni z \to 0} T(z)x = x$ for all $x \in E$.

It can be shown that the above conditions are equivalent to

(i) $T(t)E \subset \text{dom}(A), t > 0.$ (ii) $||tAT(t)||_{\mathcal{L}(E)} \le c < \infty, t > 0.$

where $-A : \operatorname{dom}(A) \subset E \longrightarrow E$ is the generator of T. Show that the C₀-semigroup of problem 1 is analytic.

4. Let $A : \operatorname{dom}(A) \subset E \longrightarrow E$ be defined through

$$E = L_2(0, 1) ,$$

$$dom(A) = \left\{ u \in H^2(0, 1) \mid u(0) = u(1) = 0 \right\} ,$$

$$Au = -\partial_{xx}u , \ u \in dom(A) ,$$

and show that -A generates an analytic C₀-semigroup on E.

5. For a bounded domain $\Omega \subset \mathbb{R}^n$ with smooth boundary, for $b \in L_{\infty}(\Omega)$ and $c \in L_{\infty}(\Omega)$ let A be the operator induced by the Dirichlet form

$$a(u,v) = \int_{\Omega} \left[(\nabla u | \nabla v) + (b | \nabla u)v + cuv \right] dx, \ u,v \in \overset{\circ}{\mathrm{H}}{}^{1}(\Omega)$$

on $\mathrm{H}^{-1}(\Omega)$. Show that it generates a C₀-semigroup on $H^{-1}(\Omega)$.

Homework due by Friday, January 16 2015

 $\mathbf{2}$