Assignment 5

1. Compute a fundamental solution G_{2} for the wave operator $\partial_{t}^{2}-\triangle$ on $\mathbb{R} \times \mathbb{R}^{2}$. [Hint: Let G_{3} be the fundamental solution for the wave operator on $\mathbb{R} \times \mathbb{R}^{3}$ introduced in class and show that

$$
\left\langle G_{3}\left(t, x, x_{3}\right), \varphi(t, x) \mathbf{1}\left(x_{3}\right)\right\rangle
$$

can be made sense of for $\varphi \in \mathcal{S}\left(\mathbb{R} \times \mathbb{R}^{2}\right)$. Define G_{2} through

$$
\left\langle G_{2}, \varphi\right\rangle=\left\langle G_{3}, \varphi \mathbf{1}\left(x_{3}\right)\right\rangle=\frac{1}{4 \pi} \int_{0}^{\infty} \frac{1}{t} \int_{\mathbb{S}_{t}^{2}} \varphi(t, x) d \sigma_{\mathbb{S}_{t}^{2}}(x) d t
$$

and use the fact that φ is independent of x_{3} to simplify the integral.]
2. A fundamental solution $G(\cdot, y)$ for the Laplacian $-\triangle$ on a domain $\Omega \subset \mathbb{R}^{n}$ with pole at $x=y$ and satisfying $\left.G(\cdot, y)\right|_{\partial \Omega}=0$ is called Green's function for the Dirichlet problem in Ω (considered as a function of $(x, y) \in \Omega \times \Omega)$. Compute a Green's function for the Dirichlet problem in the half-space $\mathbb{H}^{n}=\mathbb{R}^{n-1} \times(0, \infty), n \geq 2$.
3. Let G be the fundamental solution for the heat operator $\partial_{t}-\triangle$ on $\mathbb{R} \times \mathbb{R}^{n}$ introduced in class. Show that

$$
G(t, \cdot) \rightarrow \delta, t \rightarrow 0+, \text { in } \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)
$$

and find a representation for the solution of the Cauchy problem

$$
\partial_{t} u-\triangle u=f \in \mathrm{~L}_{1, l o c}\left([0, \infty), \mathcal{S}^{\prime}\right), u(0, \cdot)=u_{0} \in \mathcal{S}^{\prime}
$$

on $(0, \infty) \times \mathbb{R}^{n}$ in terms of G.
4. Compute the general solution to the following initial value problem for the wave equation

$$
\partial_{t}^{2} u-\partial_{x}^{2} u=f(t, x), u(0, \cdot)=u_{0}, \partial_{t} u(0, \cdot)=u_{1}
$$

in $(0, \infty) \times \mathbb{R}$ in terms of a fundamental solution for the wave operator. What is the regularity of the solution if

$$
\left(f, u_{0}, u_{1}\right) \in \mathrm{C}([0, \infty), \mathcal{S}) \times \mathcal{S} \times \mathcal{S} ?
$$

5. Let $u: \Omega \rightarrow \mathbb{R}$ be a harmonic function (i.e. $\Delta u=0$) on the domain Ω. Prove Gauss's law of the arithmetic mean

$$
u(x)=\frac{1}{\omega_{n} r^{n-1}} \int_{|x-y|=r} u(y) d \sigma_{r}(y)
$$

valid for all x and r such that $\mathbb{B}(x, r) \subset \Omega$.
[Hint: Use Green's formula with u and a Green's function for the Dirichlet problem on $\mathbb{B}(x, r)$.]

