Assignment 14

1. (Pohožaev's identity) Assume that $g \in \mathrm{C}(\mathbb{R}, \mathbb{R}), G(u)=\int_{0}^{u} g(v) d v$ and that $\Omega \subset \mathbb{R}^{n}$ is bounded with smooth boundary. Let u be a classical solution of

$$
\left\{\begin{aligned}
-\Delta u & =g(u) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

and show that it satisfies
$n \int_{\Omega} G(u) d x+\frac{2-n}{2} \int_{\Omega} u g(u) d x=\frac{1}{2} \int_{\partial \Omega}(\nabla u \cdot \nu)^{2}(x \cdot \nu) d \sigma$
[Hint: Use Gauss theorem with the vector field $V(x)=(x \cdot \nabla u) \nabla u$.]
2. Use Pohožaev's identity to prove that no nontrivial solution can exist for

$$
\left\{\begin{aligned}
-\triangle u & =|u|^{p} \quad & \text { in } \Omega \\
u & =0 \quad & \text { on } \partial \Omega
\end{aligned}\right.
$$

if $p>\frac{n+2}{n-2}$ and Ω is a star-shaped bounded Lipschitz domain in \mathbb{R}^{n}.
3. Let X be a normed vector space. Prove that a convex functional $\phi: X \rightarrow \mathbb{R}$ is continuous at $x \in X$ if it is bounded in a neighborhood of x. Give an example of a convex functional which is nowhere continuous.
4. Let $\beta \in \mathrm{C}^{\infty}(\mathbb{R})$ satisfying $\beta^{\prime}(\mathbb{R}) \subset[\delta, \sigma]$ for $\delta, \sigma \in(0, \infty)$. Give a weak formulation of

$$
\begin{cases}-\triangle u=f & \text { in } \Omega \\ \partial_{\nu} u+\beta(u)=0 & \text { on } \Omega\end{cases}
$$

in an open bounded domain $\Omega \subset \mathbb{R}^{n}$ and prove that it possesses a weak solution.
5. For an open and bounded $\Omega \subset \mathbb{R}^{n}$ let

$$
\mathcal{A}=\left\{u \in \mathrm{H}_{0}^{1}\left(\Omega, \mathbb{R}^{m}\right) \mid u=g \text { on } \partial \Omega,|u|=1 \text { a.e. }\right\} .
$$

Show that ϕ defined by $\phi(u)=\frac{1}{2} \int_{\Omega}|D u(x)|^{2} d x$ has at least one minimizer in $\mathcal{A}($ if $\mathcal{A} \neq \emptyset)$ and that any minimizer satisfies

$$
\begin{aligned}
& \int_{\Omega} D u(x): D v(x) d x=\int_{\Omega}|D u(x)|^{2} u(x) v(x) d x \\
& v \in \mathrm{H}_{0}^{1}\left(\Omega, \mathbb{R}^{m}\right) \cap \mathrm{L}_{\infty}\left(\Omega, \mathbb{R}^{m}\right)
\end{aligned}
$$

Homework due by Wednesday, May 212008

