Assignment 7

1. For $\alpha \in(0,1), 0 \leq s_{0}<s_{1}$ and $s=(1-\alpha) s_{0}+\alpha s_{1}$ prove the interpolation inequality

$$
\|u\|_{\mathrm{H}^{s}} \leq c\|u\|_{\mathrm{H}^{s_{0}}}^{1-\alpha}\|u\|_{\mathrm{H}^{s_{1}}}^{\alpha}, u \in \mathrm{H}^{s_{1}}
$$

first for \mathbb{R}^{n} and then for a bounded domain with smooth boundary.
2. Let Banach spaces $E_{j}, j=0,1,2$, be given with

$$
E_{2} \hookrightarrow E_{1} \hookrightarrow E_{0} .
$$

Show that, given $\varepsilon>0$, there is a constant $c_{\varepsilon}>0$ such that

$$
\|u\|_{E_{1}} \leq \varepsilon\|u\|_{E_{2}}+c_{\varepsilon}\|u\|_{E_{0}}, u \in E_{2}
$$

3. Show that the trace operator $\gamma_{\partial \mathbb{H}^{n}}$ satisfies

$$
\gamma_{\partial \mathbb{H}^{n}}\left(\mathrm{H}^{2}\left(\mathbb{R}^{n}\right)\right)=\mathrm{H}^{3 / 2}\left(\partial \mathbb{H}^{n}\right) .
$$

4. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary, $\alpha>0$ and $f \in \mathrm{~L}_{2}(\Omega)$. Find the boundary value problem for which

$$
\int_{\Omega} \nabla u \cdot \nabla v d x+\int_{\Omega} u v d x+\alpha \int_{\partial \Omega} u v d \sigma_{\partial \Omega}=\int_{\Omega} f v d x \forall v \in \mathrm{H}^{1}(\Omega)
$$

is the appropriate weak formulation and show that it possesses a unique solution.
5. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary and find the natural weak formulation of the bvp

$$
\triangle^{2} u=f \in \mathrm{~L}_{2}(\Omega), u=0, \partial_{\nu} u=0 \text { on } \partial \Omega
$$

and prove that it has a unique solution.

