Assignment 1

1. Assume that $f \in C([0,1])$ and that

$$F \in \mathcal{C}([0,1] \times [0,1] \times \mathbb{R}), \ \partial_u F \in \mathcal{C}([0,1] \times [0,1] \times \mathbb{R})$$

and consider the integral equation

$$u(x) = \int_0^1 F(x, y, u(y)) \, dy + f(x) \, , \, 0 \le x \le 1 \, .$$

Show that, if $\|\partial_u F\|_{\infty} < 1$, the integral equation has a unique solution $u \in C([0, 1])$.

Let $\Omega \subset \mathbb{R}^n$ be open. A map $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is called *Carathéodory function* whenever

- (i) $f(\cdot, s) : \Omega \to \mathbb{R}$ is measurable for every $s \in \mathbb{R}$.
- (ii) $f(x, \cdot) : \mathbb{R} \to \mathbb{R}$ is continuous for almost every $x \in \Omega$.
 - 2. Let $f:\Omega\times\mathbb{R}\to\mathbb{R}$ be a Carathéodory function and $p,q\geq 1.$ Assume that

 $|f(x,s)| \le c|s|^{p/q} + g(x)$

for some $g \in L_q(\Omega)$. Prove that the Nemytzki operator (substitution operator) $N_f : L_p(\Omega) \to L_q(\Omega)$ defined through

$$(N_f u)(x) := f(x, u(x)), x \in \Omega$$

is well-defined, continuous and maps bounded sets onto bounded sets.

3. Let $\Omega \subset \mathbb{R}^n$ be open and bounded. Assume that the Carathéodory function $f: \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies

$$\underline{f} \leq \frac{f(x,u) - f(x,v)}{u - v} \leq \overline{f} \text{ and } f(\cdot, 0) \in \mathcal{L}_2(\Omega)$$

with $\sigma(-\triangle_D) \cap [\underline{f}, \overline{f}] = \emptyset$. Show that

$$\begin{cases} \triangle u = f(x, u) & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

possesses a unique weak solution $u \in \overset{\circ}{\mathrm{H}}{}^{1}(\Omega)$.

- 4. (Kolmogoroff) Show that a subset $K \subset L_p(\mathbb{R}^n)$ $(1 \le p < \infty)$ is compact iff
 - (i) K is closed and bounded.

(ii) $\int_{|x|\ge N} |f(x)|^p dx \to 0$, $N \to \infty$, uniformly in $f \in K$.

(iii) $\int_{\mathbb{R}^n} |f(x+h) - f(x)|^p dx \to 0$, $|h| \to 0$, uniformly in $f \in K$. [Hint: Use the density of test functions in $L_p(\mathbb{R}^n)$, the strong continuity of the translation semigroup on $L_p(\mathbb{R}^n)$ and Arzéla-Ascoli.]

5. Let $1 \leq p < \infty$ and prove that

$$\left(\int_{\mathbb{R}^n} |u(x+h) - u(x)|^p \, dx\right)^{1/p} \le |h| \, \|u\|_{1,p}$$

for $u \in W_p^1(\mathbb{R}^n)$. Use this estimate and Kolmogoroff's characterization of compactness to show that $W_p^1(\Omega) \hookrightarrow L_p(\Omega)$ for $\Omega \subset \mathbb{R}^n$ open and bounded.

The Homework is due by April 19 2002