Assignment 2

A linear operator $A : \operatorname{dom}(A) \subset E \longrightarrow E$ is *invertible* on a normed vector space iff there is $B \in \mathcal{L}(E)$ with $AB = \operatorname{id}_E$ and $BA = \operatorname{id}_{\operatorname{dom}(A)}$. The resovent set $\rho(A)$ and the spectrum $\sigma(A)$ of A are then given by

 $\rho(A) := \{\lambda \in \mathbb{C} \mid \lambda - A \text{ is invertible} \}$

and

 $\sigma(A) = \mathbb{C} \setminus \rho(A) \,,$

respectively. The spectrum of an operator A is usually divided into point spectrum $\sigma_p(A)$, continuous spectrum $\sigma_c(A)$ and residual spectrum $\sigma_r(A)$ where

$$\sigma_p(A) = \left\{ \lambda \in \sigma(A) \mid \ker(\lambda - A) \neq \{0\} \right\}$$

$$\sigma_c(A) = \left\{ \lambda \in \sigma(A) \mid (\lambda - A)^{-1} \text{ is densely defined but not bounded} \right\}$$

$$\sigma_r(A) = \left\{ \lambda \in \sigma(A) \mid \operatorname{range}(\lambda - A) \text{ is not dense in } E \right\}$$

Elements of $\sigma_p(A)$ are called *eigenvalues*.

- 1. Produce simple examples of operators showing that any of the spectral sets $\sigma_p(A)$, $\sigma_c(A)$ and $\sigma_r(A)$ can be non empty.
- 2. Let *E* be a normed vector space and $A \in \mathcal{L}(E)$ a compact operator. Show that $\sigma_p(A)$ is countable and the only possible accumulation point is $\lambda = 0$. Also $0 \in \sigma(A)$ if dim $(E) = \infty$. It can be shown that any spectral value $\lambda \neq 0$ is an eigenvalue. [Hint: Show that for any given $\varepsilon > 0$ there are only finitely many eigenvalues with $|\lambda| \geq \varepsilon$.]
- 3. Let E be a normed vector space and $A \in \mathcal{L}(E)$ a compact operator. Show that

dim $(ker[(\lambda - A)^n]) < \infty$ for any $\lambda \neq 0$ and n = 1, 2, ...

[Use the fact that $\overline{\mathbb{B}}_E(0,1)$ is compact iff dim $(E) < \infty$ and that eigenvectors to different eigenvalues are linearly independent.]

4. (Pohožaev's identity) Assume that $g \in C(\mathbb{R}, \mathbb{R})$, $G(u) = \int_0^u g(v) dv$ and that $\Omega \subset \mathbb{R}^n$ is bounded with smooth boundary. Let u be a classical solution of

$$\begin{cases} -\triangle u = g(u) & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$

and show that it satisfies

$$n\int_{\Omega} G(u) \, dx + \frac{2-n}{2} \int_{\Omega} u \, g(u) \, dx = \frac{1}{2} \int_{\partial \Omega} (\nabla u \cdot \nu)^2 (x \cdot \nu) \, d\sigma$$

[Hint: Use Gauss theorem with the vector field $V(x) = (x \cdot \nabla u) \nabla u$.]

5. Use Pohožaev's identity to prove that no nontrivial solution can exist for

$$\begin{cases} -\triangle u = |u|^p & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$

if $p > \frac{n+2}{n-2}$ and Ω is a star-shaped bounded Lipschitz domain in \mathbb{R}^n . The Homework is due by May 3 2002.