Assignment 2

1. Let $C^{\infty}(-1,1) \ni a \ge a_0 > 0$ and $y \in (-1,1)$. Compute $G(\cdot, y)$ satisfying

$$-\partial_x \big(a(x)\partial_x G(\cdot, y) \big) = \delta_y$$

and G(-1,y)=G(1,y)=0. Let $f\in \mathrm{L}^1(-1,1)$ and show that u defined through

$$u(x) = \int_{-1}^{1} G(x, y) f(y) \, dy \, , \, x \in (-1, 1)$$

solves (in which sense?) the following boundary value problem

$$\begin{cases} -\partial_x (a(x)\partial_x u) = f\\ u(-1) = u(1) = 0 \end{cases}$$

2. Let $\omega \in \mathbb{R}$ and find the solution of

$$(\partial_x^2 + \omega^2)G = \delta$$
 in $\mathcal{D}'(\mathbb{R})$

[Hint: Let G = Hf for $f \in C^{\infty}(\mathbb{R})$ and the Heaviside function H]

3. Let $T \in \mathcal{E}'(\mathbb{R}^n)$ with $\operatorname{supp}(T) = K$ be of finite order $m \in \mathbb{N}$. Show that

 $\langle T, \phi \rangle = 0$ for any $\phi \in \mathcal{E}(\mathbb{R}^n)$ with $\partial^{\alpha} \phi |_K \equiv 0$ for $|\alpha| \leq m$

4. Let E be a given vector space. A function $p: E \to [0,\infty)$ is called *seminorm* if

 $p(x+y) \le p(x) + p(y)$ and $p(\alpha x) = |\alpha| p(x)$

for $x, y \in E$ and $\alpha \in \mathbb{K}$. A family of seminorms $\{p_{\lambda} : \lambda \in \Lambda\}$ is called *separating* if

 $p_{\lambda}(x) = 0$ for each $\lambda \in \Lambda$ implies x = 0.

Now, a set $X \subset E$ is called *open* if for each $x \in X$ there are finitely many $\lambda_j \in \Lambda$ and $\epsilon_j > 0$ such that

$$x + \bigcap_{j=1,\dots,m} p_{\lambda_j}^{-1}((0,\epsilon_j)) \subset X.$$

Then the collection of all open sets defines a topology on E and Eendowed with this topology is called *locally convex space*. A map $u: E \to E$ is then continuous iff preimages of open sets are open. Express this in terms of the seminorms p_{λ} . Prove that the space $\mathcal{E}(\Omega)$ is a locally convex space with seminorms

 $\{p_{K,m} : K \subset \Omega \text{ compact and } m \in \mathbb{N}\}$

defined through $p_{K,m}(\varphi) = \sup_{x \in K, |\alpha| \le m} \left| D^{\alpha} \varphi(x) \right|.$

5. Let $\psi \in \mathcal{D}(\mathbb{R}^n)$ with $\psi = 1$ on $\mathbb{B}(0,1)$ and define ψ_k through $\psi_k(x) = \psi(\frac{x}{k}), \ x \in \mathbb{R}^n$.

Show that $\psi_k \to \mathbf{1} \ (k \to \infty)$ in $\mathcal{E}(\mathbb{R}^n)$. Then prove that $\mathcal{D}(\mathbb{R}^n)$ is dense in $\mathcal{E}(\mathbb{R}^n)$ as well as $\mathcal{E}(\mathbb{R}^n)'$ in $\mathcal{D}(\mathbb{R}^n)'$.

The Homework is due by October 19 2001