## Assignment 3

1. Compute the Fourier transorm with respect to the variable $x \in \mathbb{R}$ of the following functions:
(i) $u_{y}(x)=e^{-y|x|}, y>0$.
(ii) $u(x)=e^{-\frac{|x|^{2}}{2}}$.
(iii) $u(x)=\frac{y^{2}-x^{2}}{\left(y^{2}+x^{2}\right)^{2}}, y>0$.
2. Show that $G$ defined through $G(x, y)=\frac{1}{\pi} \frac{y}{x^{2}+y^{2}}$ for $x \in \mathbb{R}$ and $y>0$ is harmonic, that is, $\triangle G=0$, and conclude that

$$
u_{g}(x, y):=\int_{-\infty}^{\infty} G(x-\tilde{x}, y) g(\tilde{x}) d \tilde{x},(x, y) \in \mathbb{R} \times(0, \infty)
$$

represents a solution of

$$
\begin{cases}\Delta u & =0 \text { in } \mathbb{R} \times(0, \infty) \\ u & =g \text { on } \mathbb{R} \times\{0\}\end{cases}
$$

for $g \in \mathrm{~L}_{1}(\mathbb{R})$. What is $\lim _{y \rightarrow \infty} u_{g}(\cdot, y)$ ?
3. Let $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $\operatorname{supp}(f) \subset \mathbb{B}(0, R)$ for $R>0$. Show that $\hat{f}$ is holomorphic in $\xi \in \mathbb{C}^{n}$ and satisfies

$$
|\hat{f}(\xi+i \eta)| \leq c_{N} \frac{1}{\left(1+|\xi|^{2}\right)^{N / 2}} e^{R|\eta|},(\xi, \eta) \in \mathbb{R}^{n}
$$

Define $\mathbb{S}^{1}=\left\{x \in \mathbb{R}^{2}| | x \mid=1\right\}$ and $\mathbb{T}^{n}:=\left(\mathbb{S}^{1}\right)^{n}$ and assume $u \in \mathrm{~L}_{1}\left(\mathbb{T}^{n}\right)$, that is, assume that $u$ is an integrable $2 \pi$ periodic function of all its variables, which can therefore be identified with a function defined on the $n$ dimensional torus $\mathbb{T}^{n}$. Then its Fourier transform is given by

$$
(\mathcal{F}(u))(k):=\hat{u}(k):=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{T}^{n}} e^{-i k \cdot \theta} u(\theta) d \theta
$$

In analogy to the Fourier transform introduced in class one has that

$$
\mathcal{F} \in \mathcal{L}\left(\mathrm{L}_{1}\left(\mathbb{T}^{n}\right), l_{\infty}\left(\mathbb{Z}^{n}\right)\right)
$$

where $l_{\infty}\left(\mathbb{Z}^{n}\right)$ is the Banach space of bounded sequences.
4. Let $n=1$ and prove that

$$
\begin{aligned}
& \qquad \quad\left(S_{n} u\right)(\theta):=\sum_{k=-n}^{n} \hat{u}(k) e^{i k \cdot \theta}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u(\theta-\varphi) D_{n}(\varphi) d \varphi \\
& \text { for } D_{n}(\theta)=\frac{\sin ((n+1 / 2) \theta)}{\sin \left(\frac{\theta}{2}\right)}
\end{aligned}
$$

5. Show that

$$
\left(S_{n} u\right)(0) \rightarrow 0(n \rightarrow \infty)
$$

if $g \in \mathrm{~L}_{1}(-\pi, \pi)$ for $g(\theta)=f(\theta) / \theta$ and deduce that

$$
\left(S_{n} u\right)\left(\theta_{0}\right) \rightarrow u\left(\theta_{0}\right)(n \rightarrow \infty)
$$

if $u$ is Lipscitz continuous at $\theta=\theta_{0}$.

