Assignment 13

1. Assume that $f \in C([0,1])$ and that

$$F \in \mathcal{C}([0,1] \times [0,1] \times \mathbb{R}), \ \partial_u F \in \mathcal{C}([0,1] \times [0,1] \times \mathbb{R})$$

and consider the integral equation

$$u(x) = \int_0^1 F(x, y, u(y)) dy + f(x), \ 0 \le x \le 1.$$

Show that, if $\|\partial_u F\|_{\infty} < 1$, the integral equation has a unique solution $u \in C([0,1])$.

2. Let $f \in C(\mathbb{B}(0,1),\mathbb{R}^n)$ be such that

$$|f(x)| \le 1 \text{ for } |x| = 1.$$

Show that f has a fixed point in $\mathbb{B}(0,1)$.

3. Let $\Omega \subset \mathbb{R}^n$ be a bounded, open set with smooth boundary. Prove that the equation

$$\begin{cases} -\triangle u = e^{-u} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

possesses a solution.

- 4. (Kolmogoroff) Show that a subset $K \subset L_p(\mathbb{R}^n)$ $(1 \leq p < \infty)$ is compact iff
 - (i) K is closed and bounded.
 - (ii) $\int_{|x|>N} |f(x)|^p dx \to 0$, $N \to \infty$, uniformly in $f \in K$.
 - (iii) $\int_{\mathbb{R}^n} |f(x+h) f(x)|^p dx \to 0$, $|h| \to 0$, uniformly in $f \in K$. [Hint: Use the density of test functions in $L_p(\mathbb{R}^n)$, the strong continuity of the translation semigroup on $L_p(\mathbb{R}^n)$ and Arzéla-Ascoli.]
- 5. Let $1 \le p < \infty$ and prove that

$$\left(\int_{\mathbb{R}^n} |u(x+h) - u(x)|^p \, dx\right)^{1/p} \le |h| \, ||u||_{1,p}$$

for $u \in \mathrm{W}^1_p(\mathbb{R}^n)$. Use this estimate and Kolmogoroff's characterization of compactness to show that $\mathrm{W}^1_p(\Omega) \hookrightarrow \mathrm{L}_p(\Omega)$ for $\Omega \subset \mathbb{R}^n$ open and bounded.

Homework due by Friday, May 13 2005.