Assignment 14

Let $\Omega \subset \mathbb{R}^n$ be open. A map $f : \Omega \times \mathbb{R} \to \mathbb{R}$ is called *Carathéodory function* whenever

(i) $f(\cdot, s) : \Omega \to \mathbb{R}$ is measurable for every $s \in \mathbb{R}$.

(ii) $f(x, \cdot) : \mathbb{R} \to \mathbb{R}$ is continuous for almost every $x \in \Omega$.

1. Let $f: \Omega \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function and $p, q \ge 1$. Assume that

$$|f(x,s)| \le c|s|^{p/q} + g(x)$$

for some $g \in L_q(\Omega)$. Prove that the Nemytzki operator (substitution operator) $N_f : L_p(\Omega) \to L_q(\Omega)$ defined through

$$(N_f u)(x) := f(x, u(x)), x \in \Omega$$

is well-defined, continuous and maps bounded sets onto bounded sets.

2. Let $\Omega \subset \mathbb{R}^n$ be open and bounded. Assume that the Carathéodory function $f: \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies

$$\underline{f} \leq \frac{f(x,u) - f(x,v)}{u - v} \leq \overline{f} \text{ and } f(\cdot,0) \in \mathcal{L}_2(\Omega)$$

with $\sigma(-\triangle_D) \cap [f,\overline{f}] = \emptyset$. Show that

$$\begin{cases} \triangle u = f(x, u) & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

possesses a unique weak solution $u \in \dot{\mathrm{H}}^{1}(\Omega)$.

3. Let H be a Hilbert space. Prove that

 $x_n \to x, y_n \rightharpoonup y (n \to \infty) \Rightarrow (x_n | y_n) \to (x | y) (n \to \infty).$

4. Let E be a normed vector space and $A \in \mathcal{L}(E)$ a compact operator. Show that

dim $(ker[(\lambda - A)^n]) < \infty$ for any $\lambda \neq 0$ and n = 1, 2, ...

[Use the fact that $\overline{\mathbb{B}}_E(0,1)$ is compact iff dim $(E) < \infty$ and that eigenvectors to different eigenvalues are linearly independent.]

5. Let $K \in \mathcal{L}(H)$ be a compact operator. Show that it maps weakly convergent sequences to convergent sequences.

Homework due on Friday, May 27 2005