Assignment 7

1. Let \mathcal{A} be the general elliptic second order differential operator in divergence from on a bounded domain Ω with smooth boundary, that is,

$$
\mathcal{A} u=-\nabla \cdot(A \nabla u)+(b \mid \nabla u)+c u
$$

where the coefficents satisfy the assumptions of Chapter 8 of class. Let $\Phi \in \operatorname{Diff}^{2}(\Omega, \widetilde{\Omega})$, that is, Φ is invertible and

$$
\Phi \in \mathrm{C}^{2}(\Omega, \widetilde{\Omega}), \Psi:=\Phi^{-1} \in \mathrm{C}^{2}(\widetilde{\Omega}, \Omega)
$$

Letting $y:=\Phi(x)$ and define $\tilde{u}(y):=u(\Psi(y))$, compute the operator $\tilde{\mathcal{A}}$ in the new variables, that is the operator satisfying

$$
\widetilde{\mathcal{A} u}=\widetilde{\mathcal{A}} \tilde{u}
$$

2. Let $f: \Omega \rightarrow \mathbb{R}$ be measurable. Define

$$
\mu_{f}(t):=|\{x \in \Omega:|f(x)|>t\}|
$$

Let $p>0$ and assume $f \in \mathrm{~L}_{p}(\Omega)$. Prove that

$$
\mu_{f}(t) \leq t^{-p}\|f\|_{p}^{p}
$$

and that

$$
\|f\|_{p}^{p}=p \int_{0}^{\infty} t^{p-1} \mu_{f}(t) d t
$$

3. Let $1 \leq q<r<\infty$ and $T: \mathrm{L}_{q}(\Omega) \cap \mathrm{L}_{r}(\Omega) \rightarrow \mathrm{L}_{q}(\Omega) \cap \mathrm{L}_{r}(\Omega)$ be a linear operator such that

$$
u_{T f}(t) \leq\left(T_{1}\|f\|_{q} / t\right)^{q} \text { and } u_{T f}(t) \leq\left(T_{2}\|f\|_{r} / t\right)^{q}
$$

for some constants T_{1} and T_{2}. Then T can be extended to an operator $T \in \mathcal{L}\left(\mathrm{~L}_{p}(\Omega)\right)$ for any $p \in(q, r)$ and

$$
\|T f\| \leq c T_{1}^{\alpha} T_{2}^{1-\alpha}\|f\|_{p}, f \in \mathrm{~L}_{q}(\Omega) \cap \mathrm{L}_{r}(\Omega)
$$

where $1 / p=(1-\alpha) / r+\alpha / q$.
[Hint: For $s>0$ use $f=f \chi_{[|f|>s]}+f \chi_{[|f| \leq s]}=f_{1}+f_{2}$ to prove that

$$
\mu_{T f}(t) \leq \mu_{T f_{1}}(t / 2)+\mu_{T f_{2}}(t / 2)
$$

and then use the previous problem and Fubini's theorem.]
4. Prove that the Neumann problem

$$
\begin{cases}-\triangle u & =f \text { in } \Omega \\ \partial_{\nu} u & =0 \text { on } \partial \Omega\end{cases}
$$

on a bounded domain with smooth boundary has a solution if and only if $\int_{\Omega} f=0$.
5. Let \mathbb{H}^{n} be the upper half-space. Given $m \in \mathbb{N}$ construct an extension operator ext : $\mathrm{C}^{m}\left(\overline{\mathbb{H}^{n}}\right) \rightarrow \mathrm{C}^{m}\left(\mathbb{R}^{n}\right)$ such that

$$
\left.(\operatorname{ext} u)\right|_{\mathbb{H}^{n}}=u, u \in \mathrm{C}^{m}\left(\overline{\mathbb{H}^{n}}\right)
$$

