Assignment 8

1. Let T be a c_0-semigroup on a Banach space E. Prove that there exist constants $M \geq 1$ and $\omega \in \mathbb{R}$ such that
 \[\|T(t)\|_{\mathcal{L}(E)} \leq M e^{\omega t}. \]

2. For a c_0-semigroup T on a Banach space E define \(\xi(t, x) = T(t)x, \ t \in [0, \infty), \ x \in E \) and prove that the following are equivalent:
 (i) $\xi(\cdot, x)$ is differentiable.
 (ii) $\xi(\cdot, x)$ is right differentiable.

3. Show that the translation semigroup T on $\text{BUC}(\mathbb{R})$ defined through
 \[T(t)f(\cdot) = f(\cdot - t), \ f \in \text{BUC}(\mathbb{R}) \]
 is strongly continuous and compute its generator.

4. Let $A \in \mathcal{G}(E), \ x \in E$ and $f \in C^1([0, \infty) \times E, E)$ and prove that
 \[
 \begin{cases}
 \dot{u} + Au = f(t, u), \ t > 0 \\
 u(0) = x
 \end{cases}
 \]
 has a unique local mild solution $u(\cdot, x) \in C([0, t^+(x)), E)$ for some $t^+(x) > 0$.
 [Hint: Use Banach Fixed-Point Theorem combined with the Variation-of-Constants-Formula]

5. Let $A \in \mathbb{C}^{n \times n}$ and show that
 \[e^{-tA} = \frac{1}{2\pi i} \int_{\partial B(0, R)} e^{\lambda t}(\lambda + A)^{-1} \ d\lambda, \]
 where $R > 0$ is such that $\sigma(-A) \subset B(0, R)$ and the integration is counterclockwise.
 [Hint: Show that both sides of the equation satisfy the same ODE and prove that they have the same initial value by reducing the problem to the case where A is a Jordan block]

The Homework is due February 18 2005