## Assignment 13

1. Find the unique weak solutions of

$$
\begin{cases}u_{t}+\frac{1}{2}|\nabla u|^{2}=0 & \text { in } \mathbb{R}^{n} \times(0, \infty), \\ u(0, \cdot)= \pm|\cdot| & \text { on } \mathbb{R}^{n}\end{cases}
$$

2. Consider the following porous medium equation:

$$
u_{t}-\triangle\left(u^{\gamma}\right)=0 \text { in } \mathbb{R}^{n} \times(0, \infty)
$$

(i) Show that there exists a solution of the form $u(t, x)=v(t) w(x)$.
(ii) Find a solution of the form $u(t, x)=\frac{1}{t^{\alpha}} v\left(\frac{x}{t^{\beta}}\right)$.

What are the main features of these solutions?
3. Find a transformation $w=\Phi(u)$ which reduces the nonlinear equation

$$
\begin{cases}u_{t}-a \triangle u+b|\nabla u|^{2}=0 & \text { in } \mathbb{R}^{n} \times(0, \infty), \\ u=g & \text { in } \mathbb{R}^{n} \times\{0\}\end{cases}
$$

to a linear one and use the latter to find a solution of the former.
4. Use the solution to the previous problem to find a solution for the viscous Burger's equation

$$
\begin{cases}u_{t}-a u_{x x}+u u_{x}=0 & \text { in } \mathbb{R} \times(0, \infty), \\ u=g & \text { in } \mathbb{R} \times\{0\}\end{cases}
$$

[Hint: Derive an equation for $w(t, x)=\int_{-\infty}^{x} u(t, y) d y$.]
5. Consider Euler's equation

$$
\begin{cases}u_{t}-u \cdot D u=-\nabla p & \text { in } \mathbb{R}^{3} \times(0, \infty) \\ \operatorname{div} u=0 & \text { in } \mathbb{R}^{3} \times(0, \infty) \\ u=g & \text { in } \mathbb{R}^{3} \times\{0\}\end{cases}
$$

Assume that there exists $v$ such that $u=\nabla v$ and derive a simpler equation for $v$. Once $v$ is obtained, how can $p$ be derived?

