Assignment 9

1. Let $\Omega \stackrel{o}{\subset} \mathbb{R}^{n}$ be bounded. Prove that

$$
\left(-\triangle, \gamma_{\partial \Omega}\right) \in \mathcal{L}_{i s}\left(\mathrm{H}^{2}(\Omega), \mathrm{L}_{2}(\Omega) \times \mathrm{H}^{3 / 2}(\partial \Omega)\right),
$$

that is, that the boundary value problem

$$
\begin{cases}-\triangle u=f & \text { in } \Omega \\ u=g & \text { on } \partial \Omega\end{cases}
$$

has a unique solution $u \in \mathrm{H}^{2}(\Omega)$ for any choice of data $(f, g) \in$ $\mathrm{L}_{2}(\Omega) \times \mathrm{H}^{3 / 2}(\partial \Omega)$ satisfying

$$
\|u\|_{\mathrm{H}^{2}(\Omega)} \leq c\left(\|f\|_{\mathrm{L}_{2}(\Omega)}+\|g\|_{\mathrm{H}^{3 / 2}(\partial \Omega)}\right)
$$

2. Let $\Omega \stackrel{o}{\subset} \mathbb{R}^{n}$ be bounded and connected. Prove that any weak solution of

$$
\begin{cases}-\triangle u=0 & \text { in } \Omega \\ \partial_{\nu} u=0 & \text { on } \partial \Omega\end{cases}
$$

must be constant.
3. Let $\Omega \stackrel{o}{\subset} \mathbb{R}^{n}$ be bounded and $f: \mathbb{R} \rightarrow \mathbb{R}$ be smooth and bounded. A function $u \in{ }^{0} \mathrm{H}^{1}(\Omega)$ satisfying

$$
\int_{\Omega} \nabla u \nabla v d x=\int_{\Omega} f(u) v d x \forall v \in \mathcal{D}(\Omega)
$$

is called weak solution of

$$
\begin{cases}-\triangle u=f(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Prove that any such weak solution u is in $\mathrm{H}^{2}(\Omega)$ and, then, in $\mathrm{C}^{\infty}(\bar{\Omega})$. A linear operator $K \in \mathcal{L}(X, Y)$ between Banach spaces X, Y is said to be compact iff
$\left(K x_{n}\right)_{n \in \mathbb{N}}$ is relatively compact in Y whenever $\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded in X.
4. Let $K \in \mathcal{L}(H)$ be a compact operator on a Hilbert space H. Show that
(i) $u_{n} \rightharpoonup u(n \rightarrow \infty) \Longrightarrow K x_{n} \longrightarrow K u(n \rightarrow \infty)$.
(ii) K^{*} is compact.
(iii) $\operatorname{ker}(1-K)$ is finite dimensional.
5. Let $\mathcal{A} u=-\operatorname{div}(\Lambda \nabla u)+b \cdot \nabla u+c u$ define a uniformly elliptic operator with smooth coefficients. Show that the subspace for which

$$
\begin{cases}\mathcal{A} u=0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

is finite dimensional.

