
You Ask a Question Week 2

Math 2A – Winter 2012

Limits are the most important concept of this class. For a real real-valued
function f we say that it has limit l ∈ R as x 6= x0 approaches x0 iff f(x)
approaches the value l in the process. The function f needs not even be
defined in x0 for this to make sense. Mathematically the definition is the
following:

lim
x→x0

f(x) = l :⇔

∀ ε > 0 ∃ δ > 0 s.t. |f(x)− l| ≤ ε provided 0 < |x− x0| ≤ δ .

Since ε > 0 can be chosen arbitrarily, the above means that l is the limiting
value of the function f as x 6= x0 approaches x0 if, no matter how small (and
positive) ε is chosen, it is always possible to make sure that the values f(x)
are at most at distance ε from the limit value l by taking x close enough to
x0, i.e. by taking δ small enough and

x0 − δ ≤ x < x0 or x0 < x ≤ x0 + δ .

Imagine yourself walking towards x0 on the real axis, even maybe hopping
from one side to other of it (but always avoiding it), with a reader in your
hands which gives you the value f(x) of the function f at the location x
where you stand at any given instant. You would say that f as limit l, if
your reading gets closer and closer to l in the process.
Computing limits. Let us first define continuity for a real real-valued
function f at a point x0 in its domain of definition. We say that f is
continuous at x0 if the following is true:

lim
x→x0

f(x) = f(x0) ,

that is, if the limit on the left-hand side exists, if f can be evaluated at
x0 (i.e. is defined there), and if these two numbers coincide. If the above
equality does not hold, the function is called discontinuous at x0.
It is clear that, if a function is continuous at x0, then computing the limit
limx→x0 f(x) becomes a triviality: you just need to plug in the argument
x0!
The function might, however, not be defined at x0, in which case plugging
in won’t do it. This is the case when the function is either given through its
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graph and you would have to find the limit by inspection, or given through
an expression that is not defined at the point of interest x0 or defined only
piecewise. In latter two situations, further investigation is needed. In the
first of the last two cases take for example the function

f(x) =
x− 1√
x− 1

, x ∈ [0,∞) , x 6= 1 ,

and compute the limit as x approaches 1. The function is clearly not defined
there and so plugging in won’t work. Even if the function were defined there,
plugging in might not work as the function could possibly be discontinuous
there. We could of course start taking x closer and closer to 1 and monitor
the values f(x) to see if they are converging anywhere. But we can do better
than that since we have an expression for the function which we can try and
massage (i.e. use some algebra on it). Just observe that in this case

f(x) =
(
√

x− 1)(
√

x + 1)√
x− 1

=
√

x + 1 , 0 ≤ x 6= 1 .

This means that we can use this equivalent expression (away from x = 1)
in order to compute the limit. This expression is, however, continuous, and
we get the limit simply by plugging in

lim
x→1

x− 1√
x− 1

= 1 +
√

1 = 2 .

In the second case, take for instance

f(x) =

{
x− 1 , x < −2 ,

x + 1 , x ≥ −2

This function is clearly defined by an expression if x < −2 and a different
one if x ≥ −2. In class we have defined left and right limits and have also
seen that

lim
x→x0

f(x) = l ⇔ lim
x→x0−

f(x) = lim
x→x0+

f(x) = l ,

or, in other words, that a limit is l if and only if both the corresponding
left and right limits exist and coincide with l. This comes in handy for the
computation of

lim
x→−2

f(x)

for the above function. In view of the definition of f it is easy to get that

lim
x→−2−

f(x) = −2− 1 = −3 and lim
x→−2+

f(x) = −2 + 1 = −1 ,
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and therefore conclude that the limit does not exist.
The original reason and goal for our interest in the computation of limits is
to make sense of

lim
x→x0

f(x)− f(x0)
x− x0

whenever possible, because it would deliver the slope of the line tangent
to the graph of f at the the point

(
x0, f(x0)

)
. This limit is tricky because

plugging in leads to 0
0 . This is a situation, along with ∞∞ and∞−∞ where we

need to be careful as these expressions could actually evaluate to anything
at all. Take for instance the first situation and consider

lim
x→3

x− 3
(x− 3)2

, lim
x→3

(x− 3)2

π(x− 3)2
, lim

x→3

(x− 3)2

(x− 3)4
, lim

x→3

(x− 3)5

(x− 3)4
,

which all evaluate to 0
0 . The various expressions can be massaged to yield

1
x− 3

,
1
π

,
1

(x− 3)2
, (x− 3) ,

repectively. In the first case the limit does not exist because the expression
approaches −∞ getting close to 3 from the left and approaches ∞ coming
from the right. The second limit clearly evaluates to 1

π , the third to ∞
because the square makes sure that the denominator is always positive no
matter on which side of 3 the argument x is, the last to 0 by simple plugging
in.
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