MATH3D WINTER TERM 2002
Mid Term Solutions

1. (a) The homogeneous equation has constant coefficients and its general solution v can be
computed by means of the characteristic equation

P 2r+1=(r+1)*=0.
It has the double root » = —1 and therefore
v(t) =cre t +eate .

A particular solution z to the inhomogeneous equation can now be computed either by the
variation-of-parameters formula or by the Ansatz z(t) = AtPte~! for p = 1,2. The case p = 0
can be excluded right away since it leads to a solution of the homogeneous equation. It turns
out that p = 2 is the right choice. In fact

2 (t) =3At%e~t — Atde™ | 2 (t) = 6Ate™  — 6At%e " + Atde™!
and consequently
2(t) + 22 (t) + 2(t) = Ae 7 [6t — 6% + 7 + 6t — 2t° + 7] = 6Ate".

Now, in order for the equation to be satisfied, we have to choose A = 1/6. Summarizing we
obtain the general solution

1
y(t) =cret Feate ™t + Etge*t .
1. (b) This equation has non constant coefficients but doesn’t involve the function y at all.
If we rename 3’ to u the equation reads
W —tu=t.

Separating the variables we obtain

(1 +u@®)’ /
—dt = tdt
/ 1+ u(?) et
which leads to u(t) = €25 = ¢; %5 — 1. Finally

y(t):/udt202+cl/eo‘5t2dt—t.

2. Let us discuss the equation first. The initial value yq is assumed to be positive. By
inspecting the right-hand-side we can see that

y <0, ify>pB/a
Yy =0, ify=p8/«a
y >0, if0<y<f/a

This already tells us that, if the solution starts out above 3/« it is going to decrease, that it is
going to remain constant if yp = §/a and that it is going to grow if yo < 3/a. This only leaves



B/« as a candidate for lim;_,, y(t). To analyze the solution’s convexity we need to compute y”.

We can do so using the equation to obtain

Y = (= By)y) = yla—28y)(a—By).

We therefore see that

y' <0, if B/2a<y<pf/a

y'=0, ify=p/a, B/2a

y' >0, if0<y<pf/2aory>a/p
To compute the solution we observe that the equation is separable and that

1 11 8 1
ya—By) ay aa-py

This leads to

! y boBy
- Y dr d
o a/o (a—ﬂy / * o a—By
-nl -n R - e e e
0 - 0 0 -

Noticing that 0 < y(t) < a/ whenever 0 < yo < /0 and that y(t) > a/f whenever yo > a/f
we can eliminate the absolute values and solve for y(¢) obtaining

aygeat
y(t) = —
o+ Byo(e —1)

3. Assuming continuous compounding, the evolution of an initial amount of money Ky
invested in an instrument with yearly return rate » and annual costs of C' is described by

K'({#t)=rK({t)—C,t>0, K(0)=Ky.
This equation was derived in class and its solution is given by

C C
K(t)= . + (Ko — ?)e”.
(a) Answering the first question amounts to finding ¢ > 0 such that
2Ky = % + (Ko — g)e” = 750 + (Ko — 750)e08t
We therefore obtain 2Ky — 750
t=12.5In (m)

(b) Here we need to compare

K1(10) = 750 + (Ko — 750)e’®
to

K>(10) = 1200 + (Ko — 1200)e
for Ko = 2000. This gives

K1(10) ~ 3500 and K>(10) ~ 3360
2



We would therefore pick the first fund for our investment.

4. By mere inspection we see that
y <0, ify>lory<-—1
y =0, ify==+1
y >0, if —1<y<l1
We therefore conclude that
tlggo y(t,yo) = 1, provided yo > —1

as well as lim;_,o y(t, —1) = —1. After computing the solution we shall see that it blows up in
finite time in the remaining case (yo < —1). The equation is separable, in fact

/

Y

=1 +1).
In order to integrate the left-hand-side of the above expression first notice that
1 1 1 1 1 1

1 —y? O+wﬂ—w):§1+y+§1—@
Then
N T R L R e T
w =2 fEimar =[G+ i) = O )

Noticing that 1 & y(¢) always has the same sign as 1 + yo we can suppress the absolute values
to obtain

L+y(t)1—yo _ 2

1—y()1+yo
from which follows that
y(t) = Yo — 1+ (14 yo)e? .
1—yo+ (1 +yo)e*

- : se 2t _ yo—1 : _ 17, %—1
When yo < —1 the denominator becomes zero if e=* = { o that is, when ¢t = 51n § o

5. The find the evolution of the fish population y we need to solve the given inhomogeneous
first order differential equation. Since a solution of the homogeneous equation is given by e’ and
the initial population amounts to a 1000 fish, we obtain

t
y(t) = 1000 €' — Fe' / e (14 cos(r)) dr.
0

using the variation-of-parameters formula. The integral can be computed by double integration
by parts, for instance, to give

y(t) = (1000 — gF)et +F[1- %sin(t) + %cos(t)] .
3



Now, the exponential term dominates for large times. To prevent extinction we therefore cer-
tainly need to at least impose that 1000 — gF > 0 or, equivalently, that F < 400. Otherwise, in
fact, if F' > 400 extinction is unavoidable. What if F' = 4007 Then
1 1
y(t) = 400[1 — 3 sin(t) + 3 cos(t)]
but 1 — 1 sin(t) + 3 cos(t) > 0 for all times and therefore the maximal allowed fishing quota is
precisely F' = 400.

6. Since the equation is inhomogeneous and g(t) is not specified we can only compute the
solution by the variation-of-parameters formula. First we compute the general solution of the
homogeneous equation via the characteristic equation

2

r“—a=20
which leads to the two linearly independent solutions
yi(t) = eV and y(t) = e Vo'
Then a particular solution is given by

_ " wp(r)g(7) ' n(r)g(r)
w(t) = —n(0) | =St | e dr

Since W (y1,y2)(7) = —2y/a this amounts to

1 t t
1) = \/Et/ —var dr — —\/Et/ var d
w(t) = 5z V™ | ey dr — eV | VS () ar]

1 [t eVelt=7) _ g—Va(t-7) 1 [t
= ﬁ/@ [ 5 lg(r)dr = ﬁ/o sinh(va(t — 7)) g() dr

The general solution is therefore given by
y(t) = c1ya(t) + caya(t) + yp(t) -
Finally we use the boundary conditions to obtain the following system
0=y(0)=c1+c2
{0 = y(1) = c1eV® 4 cpe VO + ﬁ fol sinh(va(l —7))g(r) dr

for ¢; and c¢s. Solving it gives

1 L
mfo sinh(va(1 — 7)) g(7) dr

Cl = —Cy = —

and thus

y(t) = _%Ssli;((\f/__?/o sinh(va(l — 7))g(r)dr + —/ sinh(Va(t — 7))g(r)dr



