Mid Term Solutions

1. (a) The homogeneous equation has constant coefficients and its general solution v can be computed by means of the characteristic equation

$$
r^{2}+2 r+1=(r+1)^{2}=0
$$

It has the double root $r=-1$ and therefore

$$
v(t)=c_{1} e^{-t}+c_{2} t e^{-t}
$$

A particular solution z to the inhomogeneous equation can now be computed either by the variation-of-parameters formula or by the Ansatz $z(t)=A t^{p} t e^{-t}$ for $p=1,2$. The case $p=0$ can be excluded right away since it leads to a solution of the homogeneous equation. It turns out that $p=2$ is the right choice. In fact

$$
z^{\prime}(t)=3 A t^{2} e^{-t}-A t^{3} e^{-t}, z^{\prime \prime}(t)=6 A t e^{-t}-6 A t^{2} e^{-t}+A t^{3} e^{-t}
$$

and consequently

$$
z^{\prime \prime}(t)+2 z^{\prime}(t)+z(t)=A e^{-t}\left[6 t-6 t^{2}+t^{3}+6 t^{2}-2 t^{3}+t^{3}\right]=6 A t e^{-t}
$$

Now, in order for the equation to be satisfied, we have to choose $A=1 / 6$. Summarizing we obtain the general solution

$$
y(t)=c_{1} e^{-t}+c_{2} t e^{-t}+\frac{1}{6} t^{3} e^{-t}
$$

1. (b) This equation has non constant coefficients but doesn't involve the function y at all. If we rename y^{\prime} to u the equation reads

$$
u^{\prime}-t u=t
$$

Separating the variables we obtain

$$
\int \frac{(1+u(t))^{\prime}}{1+u(t)} d t=c+\int t d t
$$

which leads to $u(t)=e^{c} e^{0.5 t^{2}}=c_{1} e^{0.5 t^{2}}-1$. Finally

$$
y(t)=\int u d t=c_{2}+c_{1} \int e^{0.5 t^{2}} d t-t
$$

2. Let us discuss the equation first. The initial value y_{0} is assumed to be positive. By inspecting the right-hand-side we can see that

$$
\begin{cases}y^{\prime}<0, & \text { if } y>\beta / \alpha \\ y^{\prime}=0, & \text { if } y=\beta / \alpha \\ y^{\prime}>0, & \text { if } 0<y<\beta / \alpha\end{cases}
$$

This already tells us that, if the solution starts out above β / α, it is going to decrease, that it is going to remain constant if $y_{0}=\beta / \alpha$ and that it is going to grow if $y_{0}<\beta / \alpha$. This only leaves
β / α as a candidate for $\lim _{t \rightarrow \infty} y(t)$. To analyze the solution's convexity we need to compute $y^{\prime \prime}$. We can do so using the equation to obtain

$$
y^{\prime \prime}=((\alpha-\beta y) y)^{\prime}=y(\alpha-2 \beta y)(\alpha-\beta y) .
$$

We therefore see that

$$
\begin{cases}y^{\prime \prime}<0, & \text { if } \beta / 2 \alpha<y<\beta / \alpha \\ y^{\prime \prime}=0, & \text { if } y=\beta / \alpha, \beta / 2 \alpha \\ y^{\prime \prime}>0, & \text { if } 0<y<\beta / 2 \alpha \text { or } y>\alpha / \beta\end{cases}
$$

To compute the solution we observe that the equation is separable and that

$$
\frac{1}{y(\alpha-\beta y)}=\frac{1}{\alpha} \frac{1}{y}+\frac{\beta}{\alpha} \frac{1}{\alpha-\beta y} .
$$

This leads to

$$
\begin{aligned}
\alpha t=\alpha \int_{0}^{t} \frac{y^{\prime}}{y(\alpha-\beta y)} d \tau=\int_{0}^{t} \frac{y^{\prime}}{y} d \tau & +\int_{0}^{t} \frac{\beta y^{\prime}}{\alpha-\beta y} d \tau \\
& =\ln \frac{|y(t)|}{\left|y_{0}\right|}-\ln \frac{|\alpha-\beta y(t)|}{\left|\alpha-\beta y_{0}\right|}=\ln \frac{\left|\alpha-\beta y_{0}\right|}{\left|y_{0}\right|} \frac{|y(t)|}{|\alpha-\beta y(t)|}
\end{aligned}
$$

Noticing that $0<y(t)<\alpha / \beta$ whenever $0<y_{0}<\alpha / \beta$ and that $y(t)>\alpha / \beta$ whenever $y_{0}>\alpha / \beta$ we can eliminate the absolute values and solve for $y(t)$ obtaining

$$
y(t)=\frac{\alpha y_{0} e^{\alpha t}}{\alpha+\beta y_{0}\left(e^{\alpha t}-1\right)}
$$

3. Assuming continuous compounding, the evolution of an initial amount of money K_{0} invested in an instrument with yearly return rate r and annual costs of C is described by

$$
K^{\prime}(t)=r K(t)-C, t>0, K(0)=K_{0} .
$$

This equation was derived in class and its solution is given by

$$
K(t)=\frac{C}{r}+\left(K_{0}-\frac{C}{r}\right) e^{r t} .
$$

(a) Answering the first question amounts to finding $t>0$ such that

$$
2 K_{0}=\frac{C}{r}+\left(K_{0}-\frac{C}{r}\right) e^{r t}=750+\left(K_{0}-750\right) e^{0.08 t} .
$$

We therefore obtain

$$
t=12.5 \ln \left(\frac{2 K_{0}-750}{K_{0}-750}\right) .
$$

(b) Here we need to compare

$$
K_{1}(10)=750+\left(K_{0}-750\right) e^{0.8}
$$

to

$$
K_{2}(10)=1200+\left(K_{0}-1200\right) e^{1}
$$

for $K_{0}=2000$. This gives

$$
K_{1}(10) \approx 3500 \text { and } K_{2}(10) \approx 3360
$$

We would therefore pick the first fund for our investment.
4. By mere inspection we see that

$$
\begin{cases}y^{\prime}<0, & \text { if } y>1 \text { or } y<-1 \\ y^{\prime}=0, & \text { if } y= \pm 1 \\ y^{\prime}>0, & \text { if }-1<y<1\end{cases}
$$

We therefore conclude that

$$
\lim _{t \rightarrow \infty} y\left(t, y_{0}\right)=1, \text { provided } y_{0}>-1
$$

as well as $\lim _{t \rightarrow \infty} y(t,-1)=-1$. After computing the solution we shall see that it blows up in finite time in the remaining case $\left(y_{0}<-1\right)$. The equation is separable, in fact

$$
\frac{y^{\prime}}{1-y^{2}}=1(y \neq \pm 1)
$$

In order to integrate the left-hand-side of the above expression first notice that

$$
\frac{1}{1-y^{2}}=\frac{1}{(1+y)(1-y)}=\frac{1}{2} \frac{1}{1+y}+\frac{1}{2} \frac{1}{1-y} .
$$

Then

$$
2 t=2 \int_{0}^{t} \frac{y^{\prime}(\tau)}{1-y(\tau)^{2}} d \tau=\int_{0}^{t}\left(\frac{y^{\prime}(\tau)}{1+y(\tau)}+\frac{y^{\prime}(\tau)}{1-y(\tau)}\right) d \tau=\ln \left(\frac{|1+y(t)|}{\left|1+y_{0}\right|} \frac{\left|1-y_{0}\right|}{|1-y(t)|}\right)
$$

Noticing that $1 \pm y(t)$ always has the same sign as $1 \pm y_{0}$ we can suppress the absolute values to obtain

$$
\frac{1+y(t)}{1-y(t)} \frac{1-y_{0}}{1+y_{0}}=e^{2 t}
$$

from which follows that

$$
y(t)=\frac{y_{0}-1+\left(1+y_{0}\right) e^{2 t}}{1-y_{0}+\left(1+y_{0}\right) e^{2 t}}
$$

When $y_{0}<-1$ the denominator becomes zero if $e^{2 t}=\frac{y_{0}-1}{1+y_{0}}$, that is, when $t=\frac{1}{2} \ln \frac{y_{0}-1}{1+y_{0}}$.
5. The find the evolution of the fish population y we need to solve the given inhomogeneous first order differential equation. Since a solution of the homogeneous equation is given by e^{t} and the initial population amounts to a 1000 fish, we obtain

$$
y(t)=1000 e^{t}-F e^{t} \int_{0}^{t} e^{-\tau}(1+\cos (\tau)) d \tau
$$

using the variation-of-parameters formula. The integral can be computed by double integration by parts, for instance, to give

$$
y(t)=\left(1000-\frac{5}{2} F\right) e^{t}+F\left[1-\frac{1}{2} \sin (t)+\frac{1}{2} \cos (t)\right]
$$

Now, the exponential term dominates for large times. To prevent extinction we therefore certainly need to at least impose that $1000-\frac{5}{2} F \geq 0$ or, equivalently, that $F \leq 400$. Otherwise, in fact, if $F>400$ extinction is unavoidable. What if $F=400$? Then

$$
y(t)=400\left[1-\frac{1}{2} \sin (t)+\frac{1}{2} \cos (t)\right]
$$

but $1-\frac{1}{2} \sin (t)+\frac{1}{2} \cos (t)>0$ for all times and therefore the maximal allowed fishing quota is precisely $F=400$.
6. Since the equation is inhomogeneous and $g(t)$ is not specified we can only compute the solution by the variation-of-parameters formula. First we compute the general solution of the homogeneous equation via the characteristic equation

$$
r^{2}-\alpha=0
$$

which leads to the two linearly independent solutions

$$
y_{1}(t)=e^{\sqrt{\alpha} t} \text { and } y_{2}(t)=e^{-\sqrt{\alpha} t} .
$$

Then a particular solution is given by

$$
y_{p}(t)=-y_{1}(t) \int_{0}^{t} \frac{y_{2}(\tau) g(\tau)}{W\left(y_{1}, y_{2}\right)(\tau)} d \tau+y_{2}(t) \int_{0}^{t} \frac{y_{1}(\tau) g(\tau)}{W\left(y_{1}, y_{2}\right)(\tau)} d \tau
$$

Since $W\left(y_{1}, y_{2}\right)(\tau)=-2 \sqrt{\alpha}$ this amounts to

$$
\begin{aligned}
& y_{p}(t)=\frac{1}{2 \sqrt{\alpha}}\left[e^{\sqrt{\alpha} t} \int_{0}^{t} e^{-\sqrt{\alpha} \tau} g(\tau) d \tau-e^{-\sqrt{\alpha} t} \int_{0}^{t} e^{\sqrt{\alpha} \tau} g(\tau) d \tau\right] \\
&=\frac{1}{\sqrt{\alpha}} \int_{0}^{t}\left[\frac{e^{\sqrt{\alpha}(t-\tau)}-e^{-\sqrt{\alpha}(t-\tau)}}{2}\right] g(\tau) d \tau=\frac{1}{\sqrt{\alpha}} \int_{0}^{t} \sinh (\sqrt{\alpha}(t-\tau)) g(\tau) d \tau
\end{aligned}
$$

The general solution is therefore given by

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

Finally we use the boundary conditions to obtain the following system

$$
\left\{\begin{array}{l}
0=y(0)=c_{1}+c_{2} \\
0=y(1)=c_{1} e^{\sqrt{\alpha}}+c_{2} e^{-\sqrt{\alpha}}+\frac{1}{\sqrt{\alpha}} \int_{0}^{1} \sinh (\sqrt{\alpha}(1-\tau)) g(\tau) d \tau
\end{array}\right.
$$

for c_{1} and c_{2}. Solving it gives

$$
c_{1}=-c_{2}=-\frac{1}{2 \sqrt{\alpha} \sinh (\sqrt{\alpha})} \int_{0}^{1} \sinh (\sqrt{\alpha}(1-\tau)) g(\tau) d \tau
$$

and thus

$$
y(t)=-\frac{1}{\sqrt{\alpha}} \frac{\sinh (\sqrt{\alpha} t)}{\sinh (\sqrt{\alpha})} \int_{0}^{1} \sinh (\sqrt{\alpha}(1-\tau)) g(\tau) d \tau+\frac{1}{\sqrt{\alpha}} \int_{0}^{t} \sinh (\sqrt{\alpha}(t-\tau)) g(\tau) d \tau
$$

