MATH 3D FarLr TErRM 2008

Final Examination

1. Find the general solution of the following equation:

A,y =3y —2y=0
B. y/// + By// o 4y — 0
Solution

Looking for a solution in the form y(t) = e
teristic equation:

At we are led to the charac-

A. N —302—2=0and B. > +3\>—4=0.

By inspection we see that the first equation admits the solution A = —1
and, similarly, that the second admits the solution A = 1. Thus both
polynomials can be factored to obtain

A. A+DN=XA=2)= A+ DA +1)(A—-2)
and B. A= D)(A2 44X +4) = (A —1)(A +2)?
This leads to the solutions

A. yl(t) = e_ta ?/2(75) = te_t7 ?/B(t) = €2t .
B. yl(t) = etv y2(t) = 6_%’ 3/3(75) = te—gt .

because of the presence of the double roots.

2. Solve the following initial value problem:

It r— ot
A. Yy ey, B. Yy ey,
y(0) =1. y(0)=1.
Solution
The equations can be solved by application of the integrating factor

method to give

A, y(t) = Le*.

e



—t

B. y(t) =ee™®
3. Find two linearly independent solutions of

Ay —t3y=0
B. 3y +t3y=0

[Explain how you get the two solutions explicitly.]

Solution
By a regular power series Ansatz y(t) = > 2 a,t™ we are led to the
following equation:

o o
A. Z ann(n — 1)t" 2 — Z ant™ 3 =
n=2 n=0

o0
2as + 6ast + 12a4t> + Z[(n + 1) (n+2)apto — an—slt"

n=3

[e.e] oo
B. Z ann(n — 1)t""2 + Z ant™t3 =
n=2 n=0

o0
2as + 6ast + 12a4t* + Z[(n + 1)(n+ 2)ant2 + an—3lt"

n=3
We get that in both cases as = ag = a4 = 0 and the recurrence relation

1
(n+1)(n+2)

for the remaining coefficents. Setting ag = 1 and a; = 0 for y;(¢) and
ap = 0 and a3 = 1 for yo(t), respectively, and using the above infor-
mation about the other coefficents produces two linearly independent
solutions.

Qpio =+ n-3,Mn >3,

4. Solve the following equations:

y' + 3y + 2y =0, y' =3+ 5y =0,
A {y(1) =0, B.{y(1)=1,

y'(1)=1. y'(1)=0.
Solution

The equation is of Euler type with indicial equation

A.r?+3r+9=0and B. 72 —4r+4=0.



which gives the two linearly independent solutions

A,y (t) =732 cos(3f/210g (1) s y2(t) = = ¢73/2 sin(3\f/210g(\t]),
B. ya(t) = 2, y2 ( ) = t*log(]t]) ,

of the homogeneous equation. A linear combination of these can be
used to satisfy the additional conditions and gives

A. 0=c1y1(1) + coya(1) = c1 and then 1 = coyhy(1) = 3\/5/202
and

B. 1=c1y1(1) + coya(1) = ¢1 and then 0 = (1) + covh(1) = 2+ 2

. Verify that y;(t) is a solution of the given equation and compute a
second linearly independent solution for

pi(t) =32 -1,
(1—t2)y" — 2ty + 6y =0.
Y1 (t) =t+ 1 s
(2t+1)y" —4(t+ 1)y +4y =0.
Solution
This is done by reduction of order. It is easily verified that y(¢) is

a solution. The second solution can be therefore secked in the form
y2(t) = v(t)y1(t). Plugging this into the equation leads to

A (1 =) [y] (v (t) + 24/ (t)v ( )+y1(t) (¢ )]
— 2t [yl (t)v(t) + ] + 6y (¢
= (1—t})[(3¢2 = 1) (¢) +12tv (t)] —2t 3t2 ’(t) =0
B. (2t + 1) [y (t)v(t) + 2y (V' () + ya (t)V' (t)]+
— 4t + 1) [y ()v( )+y1( )V’ (t)] + dyi (t)v(t)
2t+1)[(t+ )+ 20/ ()] —4(t +1)%'(t) = 0

and eventually to:

2t 6t

2 1
—2 2
1—1¢2 3t2—1

A +1 “t+1-

A.%: ’B.%:Q_'_



From this we obtain
1—t2 2t 41
A V)= 55 B.V(t) =" — .
0= mE e B =Ty

This is an acceptable answer.

. A. A mass of 100 g stretches a spring 5 cm. If the mass is set in
motion from its equilibrium position with a downward velocity
of 10 cm/s, determine its position at time ¢ in the absence of
damping. When does the mass return to its equilibrium position
for the first time?

B. A mass of 300 g stretches a spring 15 cm. If the mass is set in
motion from its equilibrium position with a downward velocity
of 5 cm/s, determine its position at time ¢ in the absence of
damping. When does the mass return to its equilibrium position
for the first time?

Solution

Remember that the spring constant k& can be obtained from the equa-
tion kAx = mg knowing the displacement Az at equilibrium, the
mass m and gravity g = 10. In both cases the & = 20. Taking into
account the given initial conditions, the deviation from equilibrium
y(t) satisfies

&y +20y =0, 29" +20y =0,
A. ¢y(0)=0, B. {y(0)=0,
y'(0) =1 . y'(0) = 5 -

The equation has solutions

A. y1(t) = cos(10V2t) , yo(t) = sin(10v/2t)
B. y1(t) = cos(101/2/3t), ya(t) = sin(104/2/3t) .

Imposing the intial conditions on the general solution cjy; (t) + caya(t)
gives in both cases that ¢; = 0 and

1 1
A. 10v2¢y = o B 104/2/3cy = %

. Find all singular points of the given equation and determine whether
each one is regular or irregular.



A, PA-ty' +(t—-2)y —3ty=0
B. t2(1—t)%y" + 2ty +4y =0

Solution
In both cases the only singular points are located at t = 0 and ¢ = 1.
Bringing the equations in normal form y” + p(t)y’ + q(t)y = 0 we have

A. tp(t) =

2 4

and B. tp(t) = my t2Q(t) = (1 _ t)2 ’

and thus t = 0 is an irregular singular point for A and a regular
singular point for B. As for t = 1 we have

A. (t—1)p(t) = 2; - 1)%q(t) =

and B. (t — 1)p(t) =

3(t— 1)
t
2

Ct(1—t)’

(t—1)%(t) = =

making it a regular singular point for A and an irregular one for B.

. Solve the equation

Y+ 2y +2y =50t —m), y" 4+ 4y = 26(t — 27),
A. {y(0)=1, B. {y(0)=0

y'(0)=0. y'(0)=0.
Solution

By taking a Laplace transform of the equation we obtain

A §(s) = 25525 + 255

5242542 52425+2"
~ o 26—27\'5
B. y(s) = o
: s+2 _ s+1 1 :
Observing that 2573 = (511211 + i)z We arrive at

A. y(t) = et cos(t) + e sin(t) 4 5ho(t — m)e” ™ sin(t — 7).
As for the other equation

B. y(t) = ho(t — 2m) sin(t — 27) .




9. Solve the initial value problem

1 0 -1 1
A. =10 2 0]y,y0)=|1
-1 0 1 2
(2 0 2 2
B. y¥y=10 1 0]y, y(0)=]2
2 0 2 1

Solution
The system can be rewritten as

Y=Y — Y3 Yy = 2y1 + 2ys3
A. Sy =2y B. Jv5 =1
yh = —1y1+y3 ys = 2y1 + 2y3

Clearly the second equation is independent from the others and can
be solved by itself to give

A. yo(t) = € B. yo(t) = 2¢!

where the initial condition was also taken into account. As for the
remaining equations observe that

A. () +u3(0) = vi(D+w3(t) = 0 B. (y1(H)—ws(t))" = vh(H)—y5(t) = 0

as follows by adding and subtracting the first and the third equation,
respectively. This gives

A. ys(t) = c—uy(t) B. ys(t) = pu(t) —c,
and the system reduces to the single equation
A. yi(t) = —c+2y1(t) B. y1(t) = 41 (1) — ¢,

which can be solved (integrating factor) to yield

t
A. yi(t) = y1(0)e* — c/ 2T dr = 2 4 %(1 )
0

t
B. y1(t) = y1(0)e?t — c/ A7) dr = 2¢% 4 2(1 — ety
0



Thus
A ys(t) = c—yi(t) = 5(1+ ) — e
B. ys(t) = (1) — e = 26% — T3 +¢"),
Imposing the remaining initial condition gives
A.y3(0)=c—1=2B. y3(0)=2—-c=1,

and the constant ¢ can be determined. Clearly we could have solved
the problem also by computing eigenvalues and eigenvectors of the
matrix A just like we learned in class.



