Final Examination

1. Find the general solution of the following equation:
A. $y^{\prime \prime \prime}-3 y^{\prime}-2 y=0$
B. $y^{\prime \prime \prime}+3 y^{\prime \prime}-4 y=0$

Solution

Looking for a solution in the form $y(t)=e^{\lambda t}$ we are led to the characteristic equation:

$$
\text { A. } \lambda^{3}-3 \lambda-2=0 \text { and B. } \lambda^{3}+3 \lambda^{2}-4=0 \text {. }
$$

By inspection we see that the first equation admits the solution $\lambda=-1$ and, similarly, that the second admits the solution $\lambda=1$. Thus both polynomials can be factored to obtain
A. $(\lambda+1)\left(\lambda^{2}-\lambda-2\right)=(\lambda+1)(\lambda+1)(\lambda-2)$

$$
\text { and B. }(\lambda-1)\left(\lambda^{2}+4 \lambda+4\right)=(\lambda-1)(\lambda+2)^{2}
$$

This leads to the solutions
A. $y_{1}(t)=e^{-t}, y_{2}(t)=t e^{-t}, y_{3}(t)=e^{2 t}$.
B. $y_{1}(t)=e^{t}, y_{2}(t)=e^{-2 t}, y_{3}(t)=t e^{-2 t}$.
because of the presence of the double roots.
2. Solve the following initial value problem:
A. $\left\{\begin{array}{l}y^{\prime}=e^{t} y, \\ y(0)=1 .\end{array}\right.$
B. $\left\{\begin{array}{l}y^{\prime}=e^{-t} y, \\ y(0)=1 .\end{array}\right.$

Solution

The equations can be solved by application of the integrating factor method to give
A. $y(t)=\frac{1}{e} e^{e^{t}}$.
B. $y(t)=e e^{-e^{-t}}$.
3. Find two linearly independent solutions of
A. $y^{\prime \prime}-t^{3} y=0$
B. $y^{\prime \prime}+t^{3} y=0$
[Explain how you get the two solutions explicitly.]

Solution

By a regular power series Ansatz $y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ we are led to the following equation:

$$
\begin{aligned}
& \text { A. } \sum_{n=2}^{\infty} a_{n} n(n-1) t^{n-2}-\sum_{n=0}^{\infty} a_{n} t^{n+3}= \\
& \quad 2 a_{2}+6 a_{3} t+12 a_{4} t^{2}+\sum_{n=3}^{\infty}\left[(n+1)(n+2) a_{n+2}-a_{n-3}\right] t^{n} \\
& \text { B. } \sum_{n=2}^{\infty} a_{n} n(n-1) t^{n-2}+\sum_{n=0}^{\infty} a_{n} t^{n+3}= \\
& \quad 2 a_{2}+6 a_{3} t+12 a_{4} t^{2}+\sum_{n=3}^{\infty}\left[(n+1)(n+2) a_{n+2}+a_{n-3}\right] t^{n}
\end{aligned}
$$

We get that in both cases $a_{2}=a_{3}=a_{4}=0$ and the recurrence relation

$$
a_{n+2}= \pm \frac{1}{(n+1)(n+2)} a_{n-3}, n \geq 3
$$

for the remaining coefficents. Setting $a_{0}=1$ and $a_{1}=0$ for $y_{1}(t)$ and $a_{0}=0$ and $a_{1}=1$ for $y_{2}(t)$, respectively, and using the above information about the other coefficents produces two linearly independent solutions.
4. Solve the following equations:
A. $\left\{\begin{array}{l}y^{\prime \prime}+\frac{4}{t} y^{\prime}+\frac{9}{t^{2}} y=0, \\ y(1)=0, \\ y^{\prime}(1)=1 .\end{array}\right.$
B. $\left\{\begin{array}{l}y^{\prime \prime}-\frac{3}{t} y^{\prime}+\frac{4}{t^{2}} y=0, \\ y(1)=1, \\ y^{\prime}(1)=0 .\end{array}\right.$

Solution

The equation is of Euler type with indicial equation

$$
\text { A. } r^{2}+3 r+9=0 \text { and B. } r^{2}-4 r+4=0
$$

which gives the two linearly independent solutions

$$
\begin{gathered}
\text { A. } y_{1}(t)=t^{-3 / 2} \cos (3 \sqrt{3} / 2 \log (|t|)), y_{2}(t)=t^{-3 / 2} \sin (3 \sqrt{3} / 2 \log (|t|), \\
\text { B. } y_{2}(t)=t^{2}, y_{2}(t)=t^{2} \log (|t|),
\end{gathered}
$$

of the homogeneous equation. A linear combination of these can be used to satisfy the additional conditions and gives

$$
\text { A. } 0=c_{1} y_{1}(1)+c_{2} y_{2}(1)=c_{1} \text { and then } 1=c_{2} y_{2}^{\prime}(1)=3 \sqrt{3} / 2 c_{2}
$$

and
B. $1=c_{1} y_{1}(1)+c_{2} y_{2}(1)=c_{1}$ and then $0=y_{1}^{\prime}(1)+c_{2} y_{2}^{\prime}(1)=2+c_{2}$
5. Verify that $y_{1}(t)$ is a solution of the given equation and compute a second linearly independent solution for
A. $\left\{\begin{array}{l}y_{1}(t)=3 t^{2}-1, \\ \left(1-t^{2}\right) y^{\prime \prime}-2 t y^{\prime}+6 y=0 .\end{array}\right.$
B. $\left\{\begin{array}{l}y_{1}(t)=t+1, \\ (2 t+1) y^{\prime \prime}-4(t+1) y^{\prime}+4 y=0 .\end{array}\right.$

Solution

This is done by reduction of order. It is easily verified that $y_{1}(t)$ is a solution. The second solution can be therefore seeked in the form $y_{2}(t)=v(t) y_{1}(t)$. Plugging this into the equation leads to

$$
\text { A. } \begin{gathered}
\left(1-t^{2}\right)\left[y_{1}^{\prime \prime}(t) v(t)+2 y_{1}^{\prime}(t) v^{\prime}(t)+y_{1}(t) v^{\prime \prime}(t)\right]+ \\
\quad-2 t\left[y_{1}^{\prime}(t) v(t)+y_{1}(t) v^{\prime}(t)\right]+6 y_{1}(t) v(t) \\
=\left(1-t^{2}\right)\left[\left(3 t^{2}-1\right) v^{\prime \prime}(t)+12 t v^{\prime}(t)\right]-2 t\left(3 t^{2}-1\right) v^{\prime}(t)=0 \\
\quad \text { B. }(2 t+1)\left[y_{1}^{\prime \prime}(t) v(t)+2 y_{1}^{\prime}(t) v^{\prime}(t)+y_{1}(t) v^{\prime \prime}(t)\right]+ \\
\quad-4(t+1)\left[y_{1}^{\prime}(t) v(t)+y_{1}(t) v^{\prime}(t)\right]+4 y_{1}(t) v(t) \\
\quad=(2 t+1)\left[(t+1) v^{\prime \prime}(t)+2 v^{\prime}(t)\right]-4(t+1)^{2} v^{\prime}(t)=0
\end{gathered}
$$

and eventually to:
A. $\frac{v^{\prime \prime}}{v^{\prime}}=\frac{2 t}{1-t^{2}}-2 \frac{6 t}{3 t^{2}-1}$,
B. $\frac{v^{\prime \prime}}{v^{\prime}}=2+\frac{2}{2 t+1}-2 \frac{1}{t+1}$.

From this we obtain
A. $v^{\prime}(t)=\frac{1-t^{2}}{\left(3 t^{2}-1\right)^{2}}$,
B. $v^{\prime}(t)=e^{2 t} \frac{2 t+1}{(t+1)^{2}}$.

This is an acceptable answer.
6. A. A mass of 100 g stretches a spring 5 cm . If the mass is set in motion from its equilibrium position with a downward velocity of $10 \mathrm{~cm} / \mathrm{s}$, determine its position at time t in the absence of damping. When does the mass return to its equilibrium position for the first time?
B. A mass of 300 g stretches a spring 15 cm . If the mass is set in motion from its equilibrium position with a downward velocity of $5 \mathrm{~cm} / \mathrm{s}$, determine its position at time t in the absence of damping. When does the mass return to its equilibrium position for the first time?

Solution

Remember that the spring constant k can be obtained from the equation $k \triangle x=m g$ knowing the displacement $\triangle x$ at equilibrium, the mass m and gravity $g=10$. In both cases the $k=20$. Taking into account the given initial conditions, the deviation from equilibrium $y(t)$ satisfies

$$
\text { A. }\left\{\begin{array} { l }
{ \frac { 1 } { 1 0 } y ^ { \prime \prime } + 2 0 y = 0 , } \\
{ y (0) = 0 , } \\
{ y ^ { \prime } (0) = \frac { 1 } { 1 0 } . }
\end{array} \quad \text { B. } \left\{\begin{array}{l}
\frac{3}{10} y^{\prime \prime}+20 y=0 \\
y(0)=0 \\
y^{\prime}(0)=\frac{1}{20}
\end{array}\right.\right.
$$

The equation has solutions
A. $y_{1}(t)=\cos (10 \sqrt{2} t), y_{2}(t)=\sin (10 \sqrt{2} t)$,
B. $y_{1}(t)=\cos (10 \sqrt{2 / 3} t), y_{2}(t)=\sin (10 \sqrt{2 / 3} t)$.

Imposing the intial conditions on the general solution $c_{1} y_{1}(t)+c_{2} y_{2}(t)$ gives in both cases that $c_{1}=0$ and

$$
\text { A. } 10 \sqrt{2} c_{2}=\frac{1}{10}, \text { B. } 10 \sqrt{2 / 3} c_{2}=\frac{1}{20}
$$

7. Find all singular points of the given equation and determine whether each one is regular or irregular.
A. $t^{2}(1-t) y^{\prime \prime}+(t-2) y^{\prime}-3 t y=0$
B. $t^{2}(1-t)^{2} y^{\prime \prime}+2 t y^{\prime}+4 y=0$

Solution

In both cases the only singular points are located at $t=0$ and $t=1$.
Bringing the equations in normal form $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ we have
A. $t p(t)=\frac{t-2}{t(1-t)}, t^{2} q(t)=\frac{3 t}{1-t}$

$$
\text { and B. } t p(t)=\frac{2}{(1-t)^{2}}, t^{2} q(t)=\frac{4}{(1-t)^{2}}
$$

and thus $t=0$ is an irregular singular point for \mathbf{A} and a regular singular point for \mathbf{B}. As for $t=1$ we have
A. $(t-1) p(t)=\frac{2-t}{t^{2}},(t-1)^{2} q(t)=\frac{3(t-1)}{t}$
and B. $(t-1) p(t)=-\frac{2}{t(1-t)},(t-1)^{2} q(t)=\frac{4}{t^{2}}$,
making it a regular singular point for \mathbf{A} and an irregular one for \mathbf{B}.
8. Solve the equation
A. $\left\{\begin{array}{l}y^{\prime \prime}+2 y^{\prime}+2 y=5 \delta(t-\pi), \\ y(0)=1, \\ y^{\prime}(0)=0 .\end{array}\right.$
B. $\left\{\begin{array}{l}y^{\prime \prime}+4 y=2 \delta(t-2 \pi), \\ y(0)=0 \\ y^{\prime}(0)=0 .\end{array}\right.$

Solution

By taking a Laplace transform of the equation we obtain
A. $\hat{y}(s)=\frac{s+2}{s^{2}+2 s+2}+\frac{5 e^{-\pi s}}{s^{2}+2 s+2}$.
B. $\hat{y}(s)=\frac{2 e^{-2 \pi s}}{s^{2}+4}$.

Observing that $\frac{s+2}{s^{2}+2 s+2}=\frac{s+1}{(s+1)^{2}+1}+\frac{1}{(s+1)^{2}+1}$ we arrive at
A. $y(t)=e^{-t} \cos (t)+e^{-t} \sin (t)+5 h_{0}(t-\pi) e^{-(t-\pi)} \sin (t-\pi)$.

As for the other equation
B. $y(t)=h_{0}(t-2 \pi) \sin (t-2 \pi)$.
9. Solve the initial value problem
A. $y^{\prime}=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1\end{array}\right] y, y(0)=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$
B. $y^{\prime}=\left[\begin{array}{lll}2 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 2\end{array}\right] y, y(0)=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$

Solution

The system can be rewritten as
A. $\left\{\begin{array}{l}y_{1}^{\prime}=y_{1}-y_{3} \\ y_{2}^{\prime}=2 y_{2} \\ y_{3}^{\prime}=-y_{1}+y_{3}\end{array}\right.$
B. $\left\{\begin{array}{l}y_{1}^{\prime}=2 y_{1}+2 y_{3} \\ y_{2}^{\prime}=y_{2} \\ y_{3}^{\prime}=2 y_{1}+2 y_{3}\end{array}\right.$

Clearly the second equation is independent from the others and can be solved by itself to give

$$
\text { A. } y_{2}(t)=e^{2 t} \text { B. } y_{2}(t)=2 e^{t}
$$

where the initial condition was also taken into account. As for the remaining equations observe that
A. $\left(y_{1}(t)+y_{3}(t)\right)^{\prime}=y_{1}^{\prime}(t)+y_{3}^{\prime}(t)=0$
B. $\left(y_{1}(t)-y_{3}(t)\right)^{\prime}=y_{1}^{\prime}(t)-y_{3}^{\prime}(t)=0$
as follows by adding and subtracting the first and the third equation, respectively. This gives
A. $y_{3}(t)=c-y_{1}(t)$
B. $y_{3}(t)=y_{1}(t)-c$,
and the system reduces to the single equation

$$
\text { A. } y_{1}^{\prime}(t)=-c+2 y_{1}(t) \text { B. } y_{1}(t)=4 y_{1}(t)-c
$$

which can be solved (integrating factor) to yield

$$
\begin{aligned}
\text { A. } y_{1}(t) & =y_{1}(0) e^{2 t}-c \int_{0}^{t} e^{2(t-\tau)} d \tau=e^{2 t}+\frac{c}{2}\left(1-e^{2 t}\right) \\
& \text { B. } y_{1}(t)=y_{1}(0) e^{4 t}-c \int_{0}^{t} e^{4(t-\tau)} d \tau=2 e^{4 t}+\frac{c}{4}\left(1-e^{4 t}\right)
\end{aligned}
$$

Thus

A. $y_{3}(t)=c-y_{1}(t)=\frac{c}{2}\left(1+e^{2 t}\right)-e^{2 t}$

$$
\text { B. } y_{3}(t)=y_{1}(t)-c=2 e^{4 t}-\frac{c}{4}\left(3+e^{4 t}\right) \text {, }
$$

Imposing the remaining initial condition gives

$$
\text { A. } y_{3}(0)=c-1=2 \text { B. } y_{3}(0)=2-c=1 \text {, }
$$

and the constant c can be determined. Clearly we could have solved the problem also by computing eigenvalues and eigenvectors of the matrix A just like we learned in class.

