
Math 3D Fall Term 2008

Final Examination

1. Find the general solution of the following equation:

A. y′′′ − 3y′ − 2y = 0

B. y′′′ + 3y′′ − 4y = 0

Solution
Looking for a solution in the form y(t) = eλt we are led to the charac-
teristic equation:

A. λ3 − 3λ− 2 = 0 and B. λ3 + 3λ2 − 4 = 0 .

By inspection we see that the first equation admits the solution λ = −1
and, similarly, that the second admits the solution λ = 1. Thus both
polynomials can be factored to obtain

A. (λ + 1)(λ2 − λ− 2) = (λ + 1)(λ + 1)(λ− 2)

and B. (λ− 1)(λ2 + 4λ + 4) = (λ− 1)(λ + 2)2

This leads to the solutions

A. y1(t) = e−t , y2(t) = te−t , y3(t) = e2t .

B. y1(t) = et , y2(t) = e−2t , y3(t) = te−2t .

because of the presence of the double roots.

2. Solve the following initial value problem:

A.

{
y′ = ety ,

y(0) = 1 .
B.

{
y′ = e−ty ,

y(0) = 1 .

Solution
The equations can be solved by application of the integrating factor
method to give

A. y(t) = 1
eeet

.
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B. y(t) = ee−e−t
.

3. Find two linearly independent solutions of

A. y′′ − t3y = 0
B. y′′ + t3y = 0

[Explain how you get the two solutions explicitly.]
Solution
By a regular power series Ansatz y(t) =

∑∞
n=0 antn we are led to the

following equation:

A.
∞∑

n=2

ann(n− 1)tn−2 −
∞∑

n=0

antn+3 =

2a2 + 6a3t + 12a4t
2 +

∞∑
n=3

[(n + 1)(n + 2)an+2 − an−3]tn

B.
∞∑

n=2

ann(n− 1)tn−2 +
∞∑

n=0

antn+3 =

2a2 + 6a3t + 12a4t
2 +

∞∑
n=3

[(n + 1)(n + 2)an+2 + an−3]tn

We get that in both cases a2 = a3 = a4 = 0 and the recurrence relation

an+2 = ± 1
(n + 1)(n + 2)

an−3 , n ≥ 3 ,

for the remaining coefficents. Setting a0 = 1 and a1 = 0 for y1(t) and
a0 = 0 and a1 = 1 for y2(t), respectively, and using the above infor-
mation about the other coefficents produces two linearly independent
solutions.

4. Solve the following equations:

A.


y′′ + 4

t y
′ + 9

t2
y = 0 ,

y(1) = 0 ,

y′(1) = 1 .

B.


y′′ − 3

t y
′ + 4

t2
y = 0 ,

y(1) = 1 ,

y′(1) = 0 .

Solution
The equation is of Euler type with indicial equation

A. r2 + 3r + 9 = 0 and B. r2 − 4r + 4 = 0 .
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which gives the two linearly independent solutions

A. y1(t) = t−3/2 cos
(
3
√

3/2 log(|t|)
)
, y2(t) = t−3/2 sin

(
3
√

3/2 log(|t|
)
,

B. y2(t) = t2 , y2(t) = t2 log(|t|) ,

of the homogeneous equation. A linear combination of these can be
used to satisfy the additional conditions and gives

A. 0 = c1y1(1) + c2y2(1) = c1 and then 1 = c2y
′
2(1) = 3

√
3/2c2

and

B. 1 = c1y1(1) + c2y2(1) = c1 and then 0 = y′1(1) + c2y
′
2(1) = 2 + c2

5. Verify that y1(t) is a solution of the given equation and compute a
second linearly independent solution for

A.

{
y1(t) = 3t2 − 1 ,

(1− t2)y′′ − 2ty′ + 6y = 0 .

B.

{
y1(t) = t + 1 ,

(2t + 1)y′′ − 4(t + 1)y′ + 4y = 0 .

Solution
This is done by reduction of order. It is easily verified that y1(t) is
a solution. The second solution can be therefore seeked in the form
y2(t) = v(t)y1(t). Plugging this into the equation leads to

A. (1− t2)
[
y′′1(t)v(t) + 2y′1(t)v

′(t) + y1(t)v′′(t)
]
+

− 2t
[
y′1(t)v(t) + y1(t)v′(t)

]
+ 6y1(t)v(t)

= (1− t2)
[
(3t2 − 1)v′′(t) + 12tv′(t)

]
− 2t(3t2 − 1)v′(t) = 0

B. (2t + 1)
[
y′′1(t)v(t) + 2y′1(t)v

′(t) + y1(t)v′′(t)
]
+

− 4(t + 1)
[
y′1(t)v(t) + y1(t)v′(t)

]
+ 4y1(t)v(t)

= (2t + 1)
[
(t + 1)v′′(t) + 2v′(t)

]
− 4(t + 1)2v′(t) = 0

and eventually to:

A.
v′′

v′
=

2t

1− t2
− 2

6t

3t2 − 1
, B.

v′′

v′
= 2 +

2
2t + 1

− 2
1

t + 1
.
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From this we obtain

A. v′(t) =
1− t2

(3t2 − 1)2
,B. v′(t) = e2t 2t + 1

(t + 1)2
.

This is an acceptable answer.

6. A. A mass of 100 g stretches a spring 5 cm. If the mass is set in
motion from its equilibrium position with a downward velocity
of 10 cm/s, determine its position at time t in the absence of
damping. When does the mass return to its equilibrium position
for the first time?

B. A mass of 300 g stretches a spring 15 cm. If the mass is set in
motion from its equilibrium position with a downward velocity
of 5 cm/s, determine its position at time t in the absence of
damping. When does the mass return to its equilibrium position
for the first time?

Solution
Remember that the spring constant k can be obtained from the equa-
tion k4x = mg knowing the displacement 4x at equilibrium, the
mass m and gravity g = 10. In both cases the k = 20. Taking into
account the given initial conditions, the deviation from equilibrium
y(t) satisfies

A.


1
10y′′ + 20y = 0 ,

y(0) = 0 ,

y′(0) = 1
10 .

B.


3
10y′′ + 20y = 0 ,

y(0) = 0 ,

y′(0) = 1
20 .

The equation has solutions

A. y1(t) = cos(10
√

2t) , y2(t) = sin(10
√

2t) ,

B. y1(t) = cos(10
√

2/3t) , y2(t) = sin(10
√

2/3t) .

Imposing the intial conditions on the general solution c1y1(t)+ c2y2(t)
gives in both cases that c1 = 0 and

A. 10
√

2c2 =
1
10

, B. 10
√

2/3c2 =
1
20

.

7. Find all singular points of the given equation and determine whether
each one is regular or irregular.
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A. t2(1− t)y′′ + (t− 2)y′ − 3ty = 0

B. t2(1− t)2y′′ + 2ty′ + 4y = 0

Solution
In both cases the only singular points are located at t = 0 and t = 1.
Bringing the equations in normal form y′′+ p(t)y′+ q(t)y = 0 we have

A. tp(t) =
t− 2

t(1− t)
, t2q(t) =

3t

1− t

and B. tp(t) =
2

(1− t)2
, t2q(t) =

4
(1− t)2

,

and thus t = 0 is an irregular singular point for A and a regular
singular point for B. As for t = 1 we have

A. (t− 1)p(t) =
2− t

t2
, (t− 1)2q(t) =

3(t− 1)
t

and B. (t− 1)p(t) = − 2
t(1− t)

, (t− 1)2q(t) =
4
t2

,

making it a regular singular point for A and an irregular one for B.

8. Solve the equation

A.


y′′ + 2y′ + 2y = 5δ(t− π) ,

y(0) = 1 ,

y′(0) = 0 .

B.


y′′ + 4y = 2δ(t− 2π) ,

y(0) = 0
y′(0) = 0 .

Solution
By taking a Laplace transform of the equation we obtain

A. ŷ(s) = s+2
s2+2s+2

+ 5e−πs

s2+2s+2
.

B. ŷ(s) = 2e−2πs

s2+4
.

Observing that s+2
s2+2s+2

= s+1
(s+1)2+1

+ 1
(s+1)2+1

we arrive at

A. y(t) = e−t cos(t) + e−t sin(t) + 5h0(t− π)e−(t−π) sin(t− π) .

As for the other equation

B. y(t) = h0(t− 2π) sin(t− 2π) .
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9. Solve the initial value problem

A. y′ =

 1 0 −1
0 2 0
−1 0 1

 y , y(0) =

1
1
2


B. y′ =

2 0 2
0 1 0
2 0 2

 y , y(0) =

2
2
1


Solution
The system can be rewritten as

A.


y′1 = y1 − y3

y′2 = 2y2

y′3 = −y1 + y3

B.


y′1 = 2y1 + 2y3

y′2 = y2

y′3 = 2y1 + 2y3

Clearly the second equation is independent from the others and can
be solved by itself to give

A. y2(t) = e2t B. y2(t) = 2et

where the initial condition was also taken into account. As for the
remaining equations observe that

A.
(
y1(t)+y3(t)

)′ = y′1(t)+y′3(t) = 0 B.
(
y1(t)−y3(t)

)′ = y′1(t)−y′3(t) = 0

as follows by adding and subtracting the first and the third equation,
respectively. This gives

A. y3(t) = c− y1(t) B. y3(t) = y1(t)− c ,

and the system reduces to the single equation

A. y′1(t) = −c + 2y1(t) B. y1(t) = 4y1(t)− c ,

which can be solved (integrating factor) to yield

A. y1(t) = y1(0)e2t − c

∫ t

0
e2(t−τ) dτ = e2t +

c

2
(1− e2t)

B. y1(t) = y1(0)e4t − c

∫ t

0
e4(t−τ) dτ = 2e4t +

c

4
(1− e4t) .
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Thus

A. y3(t) = c− y1(t) =
c

2
(1 + e2t)− e2t

B. y3(t) = y1(t)− c = 2e4t − c

4
(3 + e4t) ,

Imposing the remaining initial condition gives

A. y3(0) = c− 1 = 2 B. y3(0) = 2− c = 1 ,

and the constant c can be determined. Clearly we could have solved
the problem also by computing eigenvalues and eigenvectors of the
matrix A just like we learned in class.
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