Final Examination

1. Find the general solution of the following equation:

 A. \(y''' - 3y' - 2y = 0 \)
 B. \(y''' + 3y'' - 4y = 0 \)

 Solution

 Looking for a solution in the form \(y(t) = e^{\lambda t} \) we are led to the characteristic equation:

 A. \(\lambda^3 - 3\lambda - 2 = 0 \) and B. \(\lambda^3 + 3\lambda^2 - 4 = 0 \).

 By inspection we see that the first equation admits the solution \(\lambda = -1 \) and, similarly, that the second admits the solution \(\lambda = 1 \). Thus both polynomials can be factored to obtain

 A. \((\lambda + 1)(\lambda^2 - \lambda - 2) = (\lambda + 1)(\lambda + 1)(\lambda - 2) \)

 and B. \((\lambda - 1)(\lambda^2 + 4\lambda + 4) = (\lambda - 1)(\lambda + 2)^2 \)

 This leads to the solutions

 A. \(y_1(t) = e^{-t}, \ y_2(t) = te^{-t}, \ y_3(t) = e^{2t} \).
 B. \(y_1(t) = e^t, \ y_2(t) = e^{-2t}, \ y_3(t) = te^{-2t} \).

 because of the presence of the double roots.

2. Solve the following initial value problem:

 A. \(\begin{cases}
 y' = e^ty, \\
 y(0) = 1.
 \end{cases} \)

 B. \(\begin{cases}
 y' = e^{-t}y, \\
 y(0) = 1.
 \end{cases} \)

 Solution

 The equations can be solved by application of the integrating factor method to give

 A. \(y(t) = \frac{1}{e}e^{e^t} \).
3. Find two linearly independent solutions of

A. \(y'' - t^3 y = 0 \)
B. \(y'' + t^3 y = 0 \)

[Explain how you get the two solutions explicitly.]

Solution
By a regular power series Ansatz \(y(t) = \sum_{n=0}^{\infty} a_n t^n \) we are led to the following equation:

A. \(\sum_{n=2}^{\infty} a_n n(n-1) t^{n-2} - \sum_{n=0}^{\infty} a_n t^{n+3} = 2a_2 + 6a_3 t + 12a_4 t^2 + \sum_{n=3}^{\infty} [(n+1)(n+2)a_{n+2} - a_{n-3}] t^n \)

B. \(\sum_{n=2}^{\infty} a_n n(n-1) t^{n-2} + \sum_{n=0}^{\infty} a_n t^{n+3} = 2a_2 + 6a_3 t + 12a_4 t^2 + \sum_{n=3}^{\infty} [(n+1)(n+2)a_{n+2} + a_{n-3}] t^n \)

We get that in both cases \(a_2 = a_3 = a_4 = 0 \) and the recurrence relation
\[
a_{n+2} = \pm \frac{1}{(n+1)(n+2)} a_{n-3}, \quad n \geq 3,
\]
for the remaining coefficients. Setting \(a_0 = 1 \) and \(a_1 = 0 \) for \(y_1(t) \) and \(a_0 = 0 \) and \(a_1 = 1 \) for \(y_2(t) \), respectively, and using the above information about the other coefficients produces two linearly independent solutions.

4. Solve the following equations:

A. \[
\begin{align*}
 y'' + \frac{4}{7} y' + \frac{9}{7} y &= 0, \\
 y(1) &= 0, \\
 y'(1) &= 1.
\end{align*}
\]

B. \[
\begin{align*}
 y'' - \frac{3}{7} y' + \frac{4}{7} y &= 0, \\
 y(1) &= 1, \\
 y'(1) &= 0.
\end{align*}
\]

Solution
The equation is of Euler type with indicial equation
\[
A. \quad r^2 + 3r + 9 = 0 \quad \text{and} \quad B. \quad r^2 - 4r + 4 = 0.
\]
which gives the two linearly independent solutions

\[A. \ y_1(t) = t^{-3/2} \cos\left(\frac{3\sqrt{3}}{2} \log(|t|)\right), \quad y_2(t) = t^{-3/2} \sin\left(\frac{3\sqrt{3}}{2} \log(|t|)\right), \]

\[B. \ y_2(t) = t^2, \quad y_2(t) = t^2 \log(|t|), \]

of the homogeneous equation. A linear combination of these can be used to satisfy the additional conditions and gives

\[A. \ 0 = c_1 y_1(1) + c_2 y_2(1) = c_1 \quad \text{and then} \quad 1 = c_2 y_2'(1) = 3\sqrt{3}/2c_2 \]

and

\[B. \ 1 = c_1 y_1(1) + c_2 y_2(1) = c_1 \quad \text{and then} \quad 0 = y_1'(1) + c_2 y_2'(1) = 2 + c_2 \]

5. Verify that \(y_1(t) \) is a solution of the given equation and compute a second linearly independent solution for

\[y_1(t) = 3t^2 - 1, \quad (1 - t^2)y'' - 2ty' + 6y = 0. \]

\[y_1(t) = t + 1, \quad (2t + 1)y'' - 4(t + 1)y' + 4y = 0. \]

Solution

This is done by reduction of order. It is easily verified that \(y_1(t) \) is a solution. The second solution can be therefore soughted in the form \(y_2(t) = v(t)y_1(t) \). Plugging this into the equation leads to

\[A. \ (1 - t^2)[y''_1(t)v(t) + 2y'_1(t)v'(t) + y_1(t)v''(t)] + 2t[y'_1(t)v(t) + y_1(t)v'(t)] + 6y_1(t)v(t) \]
\[= (1 - t^2)[(3t^2 - 1)v''(t) + 12tv'(t)] - 2(3t^2 - 1)v'(t) = 0 \]

\[B. \ (2t + 1)[y''_1(t)v(t) + 2y'_1(t)v'(t) + y_1(t)v''(t)] + 4(t + 1)[y'_1(t)v(t) + y_1(t)v'(t)] + 4y_1(t)v(t) \]
\[= (2t + 1)[(t + 1)v''(t) + 2v'(t)] - 4(t + 1)^2v'(t) = 0 \]

and eventually to:

\[A. \ \frac{v''}{v'} = \frac{2t}{1 - t^2} - 2 \cdot \frac{6t}{3t^2 - 1}, \quad B. \ \frac{v''}{v'} = 2 + \frac{2}{2t + 1} - \frac{1}{t + 1}. \]
From this we obtain

\[
\textbf{A. } v'(t) = \frac{1 - t^2}{(3t^2 - 1)^2}, \quad \textbf{B. } v'(t) = e^{2t} \frac{2t + 1}{(t + 1)^2}.
\]

This is an acceptable answer.

6. **A.** A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 10 cm/s, determine its position at time \(t\) in the absence of damping. When does the mass return to its equilibrium position for the first time?

B. A mass of 300 g stretches a spring 15 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 5 cm/s, determine its position at time \(t\) in the absence of damping. When does the mass return to its equilibrium position for the first time?

Solution

Remember that the spring constant \(k\) can be obtained from the equation \(k\Delta x = mg\) knowing the displacement \(\Delta x\) at equilibrium, the mass \(m\) and gravity \(g = 10\). In both cases the \(k = 20\). Taking into account the given initial conditions, the deviation from equilibrium \(y(t)\) satisfies

\[
\textbf{A. } \begin{cases}
\frac{1}{10} y'' + 20y = 0, \\
y(0) = 0, \\
y'(0) = \frac{1}{10}.
\end{cases}
\]

\[
\textbf{B. } \begin{cases}
\frac{3}{10} y'' + 20y = 0, \\
y(0) = 0, \\
y'(0) = \frac{1}{20}.
\end{cases}
\]

The equation has solutions

\[
\textbf{A. } y_1(t) = \cos(10\sqrt{2}t), \quad y_2(t) = \sin(10\sqrt{2}t),
\]

\[
\textbf{B. } y_1(t) = \cos(10\sqrt{2/3}t), \quad y_2(t) = \sin(10\sqrt{2/3}t).
\]

Imposing the initial conditions on the general solution \(c_1y_1(t) + c_2y_2(t)\) gives in both cases that \(c_1 = 0\) and

\[
\textbf{A. } 10\sqrt{2}c_2 = \frac{1}{10}, \quad \textbf{B. } 10\sqrt{2/3}c_2 = \frac{1}{20}.
\]

7. Find all *singular* points of the given equation and determine whether each one is *regular* or *irregular.*
A. \(t^2(1-t)y'' + (t-2)y' - 3ty = 0 \)

B. \(t^2(1-t)^2y'' + 2ty' + 4y = 0 \)

Solution

In both cases the only singular points are located at \(t = 0 \) and \(t = 1 \).

Bringing the equations in normal form \(y'' + p(t)y' + q(t)y = 0 \) we have

A. \(tp(t) = \frac{t - 2}{t(1-t)}, \quad t^2q(t) = \frac{3t}{1-t} \)

and B. \(tp(t) = \frac{2}{(1-t)^2}, \quad t^2q(t) = \frac{4}{(1-t)^2} \),

and thus \(t = 0 \) is an irregular singular point for A and a regular singular point for B. As for \(t = 1 \) we have

A. \((t-1)p(t) = \frac{2 - t}{t^2}, \quad (t-1)^2q(t) = \frac{3(t-1)}{t} \)

and B. \((t-1)p(t) = -\frac{2}{t(1-t)}, \quad (t-1)^2q(t) = \frac{4}{t^2} \),

making it a regular singular point for A and an irregular one for B.

8. Solve the equation

\[
\begin{cases}
 y'' + 2y' + 2y = 5\delta(t - \pi), \\
 y(0) = 1, \\
 y'(0) = 0.
\end{cases}
\]

A. \(y(t) = e^{t}\cos(t) + e^{t}\sin(t) + 5h_0(t - \pi)e^{-(t-\pi)}\sin(t - \pi). \)

As for the other equation

\[
\begin{cases}
 y'' + 4y = 2\delta(t - 2\pi), \\
 y(0) = 0, \\
 y'(0) = 0.
\end{cases}
\]

B. \(y(t) = h_0(t - 2\pi)\sin(t - 2\pi). \)
9. Solve the initial value problem

\[\begin{align*}
\text{A. } y' &= \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix} y, \ y(0) = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \\
\text{B. } y' &= \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 2 \end{bmatrix} y, \ y(0) = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}
\end{align*} \]

Solution

The system can be rewritten as

\[\begin{align*}
\text{A. } &\begin{cases}
y_1' = y_1 - y_3 \\
y_2' = 2y_2 \\
y_3' = -y_1 + y_3
\end{cases} \\
\text{B. } &\begin{cases}
y_1' = 2y_1 + 2y_3 \\
y_2' = y_2 \\
y_3' = 2y_1 + 2y_3
\end{cases}
\end{align*} \]

Clearly the second equation is independent from the others and can be solved by itself to give

\[\begin{align*}
\text{A. } y_2(t) &= e^{2t} \\
\text{B. } y_2(t) &= 2e^t
\end{align*} \]

where the initial condition was also taken into account. As for the remaining equations observe that

\[\begin{align*}
\text{A. } & (y_1(t) + y_3(t))' = y_1'(t) + y_3'(t) = 0 \\
\text{B. } & (y_1(t) - y_3(t))' = y_1'(t) - y_3'(t) = 0
\end{align*} \]

as follows by adding and subtracting the first and the third equation, respectively. This gives

\[\begin{align*}
\text{A. } & y_3(t) = c - y_1(t) \\
\text{B. } & y_3(t) = y_1(t) - c,
\end{align*} \]

and the system reduces to the single equation

\[\begin{align*}
\text{A. } & y_1'(t) = -c + 2y_1(t) \\
\text{B. } & y_1(t) = 4y_1(t) - c
\end{align*} \]

which can be solved (integrating factor) to yield

\[\begin{align*}
\text{A. } & y_1(t) = y_1(0)e^{2t} - c \int_0^t e^{2(t-\tau)} d\tau = e^{2t} + \frac{c}{2}(1 - e^{2t}) \\
\text{B. } & y_1(t) = y_1(0)e^{4t} - c \int_0^t e^{4(t-\tau)} d\tau = 2e^{4t} + \frac{c}{4}(1 - e^{4t}).
\end{align*} \]
Thus

\[A. \quad y_3(t) = c - y_1(t) = c - \frac{c}{2} (1 + e^{2t}) - e^{2t} \]
\[B. \quad y_3(t) = y_1(t) - c = 2e^{4t} - \frac{c}{4} (3 + e^{4t}), \]

Imposing the remaining initial condition gives

\[A. \quad y_3(0) = c - 1 = 2 \quad B. \quad y_3(0) = 2 - c = 1, \]

and the constant \(c \) can be determined. Clearly we could have solved the problem also by computing eigenvalues and eigenvectors of the matrix \(A \) just like we learned in class.