1. Please indicate with a check mark (\checkmark) which of the equations below are linear (L) and which are nonlinear (N). For the linear ones specify whether they are homogeneous (H) or inhomogeneous (I).
A.

Equation	L	N	H	I
$\tanh \left(y^{\prime}\right)+5 y=\cos (t)$		\checkmark		
$e^{3 t} y^{\prime \prime}+\cos (t) y^{\prime \prime}+y^{2}=t^{5}$		\checkmark		
$(2+\sin (t)) y^{\prime}+e^{\sin (t)} y=t-1$	\checkmark			\checkmark
$y^{\prime \prime}+e^{y^{\prime}} y=8$				
$y^{\prime \prime \prime}+t^{2} y^{\prime \prime}+e^{-t} y^{\prime}=\pi y$	\checkmark		\checkmark	

B.

Equation	L	N	H	I
$\left(3+e^{t^{2}+1}\right) y^{\prime}+\sin (t) y=(t+1)^{2}$	\checkmark			\checkmark
$5 y^{\prime}+\tanh (t)=\cos (y)$				
$y^{\prime \prime \prime}+e^{y^{\prime \prime}} y=7 \sin (t)$		\checkmark		

2. Solve the following initial value problem:
A. $\left\{\begin{array}{l}y^{\prime}=-\frac{\sin (t)}{y^{6}} \\ y(0)=1\end{array}\right.$
B. $\left\{\begin{array}{l}y^{\prime}=\frac{\cos (t)}{y^{4}} \\ y(0)=2\end{array}\right.$

Solution:
In both cases separation of variables is the method of choice here. It gives
A. $\frac{1}{7} y^{7}(t)-\frac{1}{7} y^{7}(0)=\int_{0}^{t} y^{6}(\tau) y^{\prime}(\tau) d \tau=-\int_{0}^{t} \sin (\tau) d \tau=\cos (t)-1$,
B. $\frac{1}{5} y^{5}(t)-\frac{1}{5} y^{5}(0)=\int_{0}^{t} y^{4}(\tau) y^{\prime}(\tau) d \tau=\int_{0}^{t} \cos (\tau) d \tau=\sin (t)$
and therefore the solutions
A. $y(t)=[7 \cos (t)-6]^{1 / 7}$,
B. $y(t)=[5 \sin (t)+32]^{1 / 5}$.
3. Find the general solution of the following equation:
A. $y^{\prime}+\frac{1}{1+t} y=t$
B. $(t+2) y^{\prime}+y=t^{2}+2 t$

Solution:

Here it is best to use the integrating factor method. In fact
A. $[(t+1) y]^{\prime}=(t+1) y^{\prime}+y=(t+1)\left[y^{\prime}+\frac{y}{t+1}\right]=(t+1) t$,
B. $[(t+2) y]^{\prime}=(t+2) y^{\prime}+y=t^{2}+2 t$,
and then
A. $(t+1) y(t)-y(0)=\frac{1}{3} t^{3}+\frac{1}{2} t^{2}$ or $y(t)=\frac{1}{1+t} y_{0}+\frac{\frac{1}{3} t^{3}+\frac{1}{2} t^{2}}{1+t}$,
B. $(t+2) y(t)-2 y(0)=\frac{1}{3} t^{3}+t^{2}$ or $y(t)=\frac{2}{t+2} y_{0}+\frac{\frac{1}{3} t^{3}+t^{2}}{t+2}$.
4. Solve the following initial value problem:
A. $\left\{\begin{array}{l}2 y^{\prime \prime}+20 y^{\prime}+50 y=0 \\ y(0)=1 \\ y^{\prime}(0)=0\end{array}\right.$
B. $\left\{\begin{array}{l}3 y^{\prime \prime}-24 y^{\prime}+48 y=0 \\ y(0)=0 \\ y^{\prime}(0)=1\end{array}\right.$

Solution:

The characterstic equation is given by
A. $r^{2}+10 r+25=0$,
B. $r^{2}-8 r+16=0$
leading to the roots

$$
\text { A. } r_{1,2}=-5, \text { B. } r_{1,2}=4
$$

and, therefore to the fundamental solution
A. $y_{1}(t)=e^{-5 t}, y_{2}(t)=t e^{-5 t}$,
B. $y_{1}(t)=e^{4 t}, y_{2}(t)=t e^{4 t}$,

It remains to find the constants c_{1} and c_{2} such that the initial conditions are satisfied for $c_{1} y_{1}+c_{2} y_{2}$, which leads to
A. $\left\{\begin{array}{l}c_{1}=1 \\ -5 c_{1}+c_{2}=0\end{array}\right.$
and B. $\left\{\begin{array}{l}c_{1}=0 \\ 4 c_{1}+c_{2}=1\end{array}\right.$

Finally this gives
A. $y(t)=e^{-5 t}+5 t e^{-5 t}$,
B. $y(t)=t e^{4 t}$.
5. Find the general solution of the following equation:
A. $y^{\prime \prime}-3 y^{\prime}+2 y=e^{t}$
B. $y^{\prime \prime}+4 y^{\prime}+3 y=e^{-t}$

Solution:
First we find two linearly independent solutions of the homogeous equation by looking at the characteristic equation
A. $r^{2}-3 r+2=(r-2)(r-1)=0$,
B. $r^{2}+4 r+3=(r+3)(r+1)=0$.
it gives the solutions
A. $y_{1}(t)=e^{2 t}, y_{2}(t)=e^{t}$,
B. $y_{1}(t)=e^{-3 t}, y_{2}(t)=e^{-t}$,

Judicious guessing is a viable alternative for the computation of a particular solution. The appropriate Ansatz reads

$$
\text { A. } Y(t)=A t e^{t}, \text { B. } Y(t)=B t e^{-t},
$$

since the right-hand side is also a solution of the homogeneous equation. A straightforward computation gives
A. Ate $e^{t}[2-3+1]+A e^{t}[-3+2]=e^{t}$,
B. $A t e^{-t}[3-4+1]+A e^{-t}[4-2]=e^{-t}$,
and leads to the general solution
A. $y(t)=-t e^{t}+c_{1} e^{2 t}+c_{2} e^{t}$,
B. $y(t)=\frac{1}{2} t e^{-t}+c_{1} e^{-3 t}+c_{2} e^{-t}$.

