Midterm Examination

Print your name: __________________ ____________
Print your ID #: ____________________________

You have 50 minutes to solve the problems. Good luck!
1. Find the solution:

 A. \(\dot{y} + 2ty = 2t \cos(t^2), \ y(0) = 0 \).

 B. \(\dot{y} + 2ty = 2t \sin(t^2), \ y(0) = 0 \).

2. Solve

 A. \(\dot{y} = \left(\frac{t}{y} \right)^2, \ y(0) = 1 \).

 B. \(\dot{y} = e^{t-y}, \ y(0) = 1 \).

3. Determine where the solution of

 A. \(y'' + 2y' + y = 0, \ y(0) = 0, \ y'(0) = a > 0 \)

 B. \(y'' + 4y' + y = 0, \ y(0) = a > 0, \ y'(0) = a \)

 takes on its maximal value.

 [The real number \(a \) is given and positive.]

4. Indicate which of the following equations are linear (l) and which are nonlinear (n) by circling your answer:

 A. \(t^2y' = e^y \)
 \(y' = t - \cos(y) \)
 \(y'' + 2y + y^2 = 0 \)
 \(y'' + e^y' + \ln(t)y = 0 \)
 \(y'' + e^y' + y = 0 \)

 B. \(e^y' = t^2y \)
 \(y' = \sin(t) - \cos(y) \)
 \(y'' + (y')^2 + 2y = 0 \)
 \(e^y'' + \cos(t)y' + y = 0 \)
 \(y'' + y' + e^y = 4 \)

5. Solve

 A. \(y'' - y = 2, \ y(0) = 0, \ y'(0) = 0 \).

 B. \(y'' + y = 1, \ y(0) = 0, \ y'(0) = 0 \).