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THE SMOOTH EXTENSION EMBEDDING METHOD∗

DANIEL J. AGRESS† AND PATRICK Q. GUIDOTTI†

Abstract. A new approach to the solution of boundary value problems within the so-called
fictitious domain method philosophy is proposed, which avoids well-known shortcomings of other
methods of this type, including the need to generate extensions of the data. The salient feature
of the novel method, which we refer to as SEEM (smooth extension embedding method), is that it
reduces the whole boundary value problem to a linear constraint for an appropriate optimization
problem formulated in a larger, simpler set containing the domain on which the boundary value
problem is posed and which allows for the use of straightforward discretizations. It can also be
viewed as a fully discrete meshfree method, which uses a novel class of basis functions and thus
builds a bridge between fictitious domain and meshfree methods. The proposed method, in essence,
computes a (discrete) extension of the solution to the boundary value problem by selecting it as
a smooth element of the complete affine family of solutions of the original equations now yielding
an underdetermined problem for an unknown defined in the whole fictitious domain. The actual
regularity of this extension is determined by that of the analytic solution and by the choice of
objective functional. Numerical experiments demonstrate that it is stable enough to efficiently solve
boundary value problems on general geometries and that it produces solutions of tunable (and high)
accuracy.
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1. Introduction. In this paper an optimization approach is proposed for the nu-
merical solution of general boundary value problems (BVPs) on complex geometries.
The approach is a hybrid of the meshfree collocation and fictitious domain methods for
solving BVPs. As will be demonstrated, this approach not only establishes a direct
connection between these two general approaches but also combines their strengths.

The most well established and commonly used numerical methods for solving
BVPs are the finite element method and the finite difference method, along with
spectral methods. While finite element methods come with the heavy burden of
generating a mesh (which becomes a serious limiting factor when dealing with some
problems, such as, for instance, moving boundary problems or those in three space di-
mensions), straightforward finite difference methods and spectral methods are limited
by the small number of allowable shapes for the domain Ω.

Two widely used methods which seek to avoid these difficulties are known as
meshfree collocation and fictitious domain methods. In meshfree collocation methods,
the solution is sought as a linear combination of radial basis functions centered at
collocation points scattered throughout the domain Ω and on its boundary Γ. While
these methods can achieve very high orders of convergence, in their simplest imple-
mentations, the resulting matrices are dense and poorly conditioned; see, for example,
[7, Chapter 16]. This leads to difficulties when scaling to denser grids. As described
in [7, 20] and as we will explain below, these methods can also be viewed as a refor-
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SMOOTH EXTENSION EMBEDDING METHOD A447

mulation of BVPs as constrained optimization problems on Rd. In fictitious domain
methods, the problem is transplanted from the original domain Ω to an encompassing
simple region B, where well-studied and understood discretizations and solvers can
be utilized. The computed solution is an approximation of u within the domain Ω
and an extension of this approximation on B\Ω . A drawback common to many of
these methods is a lack of regularity across the boundary which often leads to a lack
of regularity of the global extension and hence to a low order of convergence; see [18]
for a discussion of this issue with regard to the immersed boundary method. Addi-
tionally, these methods often require a very different treatment of the various types
of commonly occurring elliptic operators and boundary conditions; see, for example,
the introduction to [15].

The approach proposed here is a hybrid of these two methods. In a way similar to
meshfree methods, it reduces the entire BVP to playing the role of a linear constraint
to an optimization problem for an appropriately chosen objective functional defined on
a larger domain. However, borrowing from the fictitious domain framework, we carry
out this constrained optimization procedure on a regular grid with straightforward
and efficient discretizations. As we will explain below, this hybrid procedure will
combine the simplicity, speed, and scalability of fictitious domain methods with the
high order accuracy and wide ranging versatility of meshfree collocation methods.

Next a detailed description is given of the proposed method as it is developed
from the ground up. Later, we will describe how the method fits into the framework
of existing meshfree methods, and we will argue that implementing meshfree methods
in a fictitious domain setting provides significant advantages. We will also compare
our method with several existing fictitious domain methods and illustrate where the
proposed method delivers the most benefits.

1.1. Description of the method. While its ideas and formulation readily ap-
ply to a wide variety of PDE problems, the method will be illustrated by means of
second order BVPs of type

(1.1)

{
Au = f in Ω,

Bu = g on Γ = ∂Ω

for an elliptic operator A such as, e.g., the Laplacian −∆, and an admissible boundary
operator B such as, e.g., the trace γΓ (Dirichlet problem), the unit outer normal
derivative ∂ν (Neumann problem), or a combination thereof (Robin type problem).

In the spirit of fictitious domain methods, the domain Ω is embedded into a
simple (square or rectangular) “container” domain B, for which Ω ⊂ B. In this paper
B is chosen to be the periodic box [−π, π)d ⊂ Rd. Denote by Bm a regular uniform
discretization of B consisting of Nm points, where m is the number of discretization
points along each dimension. See Figure 1 below. Replace the continuous differential
operator by a discrete counterpart A = Am, defined as a discrete evaluation of A at
grid-points which lie inside Ω,

x ∈ Ωm = Ω ∩ Bm = {xk | k = 1, . . . , NΩ
m}, NΩ

m = |Ωm| ∈ N,

where Am acts on “discrete functions” defined on Bm. Given a set of points

Γm = {yj | j = 1, . . . , NΓ
m} ⊂ Γ,

it is possible to discretize the boundary condition using any kind of interpolation
and any kind of discrete differentiation (where needed) based on the grid Bm and
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Fig. 1. Discretizing the domain and its boundary.

to obtain a corresponding discrete equation Bu = Bmum = gm for the unknown
vector um : Bm → R and a discretization gm : Γm → R of the boundary function g,
defined on Γm. In this way, the continuous BVP (1.1) can be replaced by the discrete
underdetermined system given by

(1.2) Cu = Cmu
m =

[
A
B

]
u =

[
Am

Bm

]
um =

[
fm

gm

]
= bm = b,

where fm is a discretization of f at grid-points in Bm ∩ Ω. Observe that we often
suppress the superscripts and subscripts in order to simplify the notation. Notice that

um ∈ RNm , fm ∈ RN
Ω
m , and gm ∈ RN

Γ
m .

In numerical experiments, the dimensions are always chosen in such a way that NΩ
m+

NΓ
m < Nm is satisfied. While not strictly necessary, care is also taken to make sure

that all equations in the system are independent of one another. The reason for this
is numerical conditioning of the relevant matrices (more will be said on this later).
We emphasize that the operators Am and Bm can be constructed using any form of
interpolation and discrete differentiation on the regular grid. For example, both finite
differences and spectral differentiation could be used.

To deal with the fact that the system is underdetermined, a common fictitious
domain approach (see, e.g., [13]) is to extend the original PDE to the entire larger
domain B. Unfortunately, beyond the obvious difficulty of finding a smooth extension
for the given data, such an extension of the problem will usually introduce a singularity
along the boundary Γ and prevent the resulting solution from attaining a high order
of convergence. In contrast to these existing methods, we do not try to modify the
problem by extending it to the encompassing domain/grid B/Bm but rather simply try
to find “the best” among the solutions of the underdetermined problem (1.2). After
all, if you use high order Bm-based discretizations of derivatives and evaluations, the
equations should be sufficient for determining a solution that achieves their order of
accuracy (up to what is allowed by the regularity of the data/solution themselves, of
course).

A straightforward approach (which works fine when no regularity at all is ex-
pected) consists of finding a minimal norm solution of the problem, i.e., in solving the
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SMOOTH EXTENSION EMBEDDING METHOD A449

linearly constrained optimization problem

(1.3) argmin{Cu=b}
1

2
‖u‖22,

where ‖ · ‖2 denotes the Euclidean norm on RNm . This would lead to the so-called
normal equations and to the solution

(1.4) u = C>
(
CC>

)−1
b.

Given that the matrix C = Cm consists of differential operators including the eval-
uation (restriction) in the domain Ωm and on the boundary Γm, its transpose then
corresponds to differential operators containing trivial extensions (read extensions by
0), and this leads to oscillations generated by the lack of regularity. As a matter of
fact, the solution of the continuous optimization problem

argmin{−∆Ωu=f,γΓu=g} ‖u‖2L2(B)

is simply given by ext0(uf,g), where ext0 denotes the trivial extension (i.e., by zero)
of a function defined on (−1, 1) to (−π, π), and uf,g is the unique solution of the
BVP −∆u = f with the given Dirichlet boundary condition. Even in the case g ≡ 0,
however, the solution generated by the optimization problem takes the form of a
difference of singular solutions, which do not even belong to L2. This is the origin of
the oscillations that are observed in numerical implementations (see Figure 2). The
next remark offers a detailed explanation of this phenomenon in a one-dimensional
context.

Remark 1.1. We illustrate this point more thoroughly with a one-dimensional
example. We reformulate the BVP{

−∂xxu = f in (−1, 1),

u(±1) = 0

as the optimization problem (1.3), which we approach by introducing a Lagrange
multiplier λ =

(
λ(−1,1), λ−1, λ1

)
and reducing it to

argminv,λ

{1

2

∫ π

−π
v2(x) dx+

∫ 1

−1

λ(−1,1)(x)
[
∂xxv + f

]
(x) dx+ λ−1v(−1) + λ1v(1)

}
,

where v : (−π, π) → R is a periodic function. Taking a variation with respect to v
yields the validity of∫ π

−π
vϕ dx =

∫
λ(−1,1)(x)∂xxϕ(x) dx− λ−1ϕ(−1) + λ1ϕ(1)

for any and all periodic testfunctions ϕ ∈ C∞π . Taking testfunctions satisfying
supp(ϕ) ⊂ (−1, 1)c, one shows that v = 0 in (−1, 1)c. Choosing testfunctions sup-
ported in (−1, 1) shows that ∂xxλ(−1,1) = v in (−1, 1), and, finally, choosing test-
functions with ϕ(±1) = 0 and others with ∂xϕ(±1) = 0, one obtains the validity
of

λ(−1,1)(±1) = 0 and λ±1 = ±λ′(−1,1)(±1).
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−1 −0.5 0 0.5 1
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Fig. 2. A 1D visualization of the oscillations caused by trivial extension with no regulariza-
tion. The plot shows a region that is only slightly larger than Ω since the oscillations occur in a
neighborhood of ∂Ω.

One can therefore solve for λ(−1,1) to see that λ(−1,1) = SDu, where SD denotes the
solution operator to −∂xx with homogeneous Dirichlet conditions at the end points
±1, and then determine λ±1. As it holds that

λ = (CC>)−1

[
f
0

]
and v = C>λ,

it follows that

v =
[
−∂xx ◦ ext0 δ−1 δ1

] λ(−1,1)

λ−1

λ1


= −∂xx

(
ext0(λ(−1,1))

)
+ λ′(−1,1)(−1)δ−1 − λ′(−1,1)(1)δ1 = ext0(u).

The easily verified fact that the dual of the trace at a point is the Dirac distribution at
the point, i.e., that γ′±1 = δ±1, was used to derive the above representation. Thus the
solution v of the optimization problem is the trivial extension of the solution u of the
original BVP, but it is obtained as the sum of singular terms with cancellation. In a
discretization, the singular terms are generally not supported on grid-points and thus
appear in the numerical solution as oscillations. This is made apparent in Figure 2.
Moreover, the exact analytical cancellation cannot be expected to also happen at the
discrete level in general. While we used a differentiated notation for u and v in this
argument for clarity of exposition, the same will not be done in what follows; instead,
the same notation will be used for the solution of the original problem and that of
the optimization problem.

Reverting to the general discussion, we observe that while the solution obtained
by the normal equation (1.4) exhibits oscillations in a discrete computation, “the
good” (regular and nonoscillatory) solution is, however, among those of the under-
determined problem (1.2). It can be obtained by requiring additional regularity. As
already pointed out, the discretizations Am and Bm are, after all, chosen to be of a
desired accuracy, and the truncations/trivial extensions destroy it. Thus, enforcing an
appropriate degree of regularity should allow for the recovery of the intrinsic accuracy
of the chosen discretizations, again, compatibly with the expected regularity of the
solution itself. We refer to the proposed method as the smooth extension embedding
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SMOOTH EXTENSION EMBEDDING METHOD A451

method (SEEM) since it implicitly selects a smooth extension of the solution. While
this selection is done in a way that is natural from the point of view of optimization
[3, Chapter 10], it has a nice analytic interpretation which will greatly help with the
practical implementation of the method. Let ‖ · ‖S be the discretization of a high
order norm such as, for instance, ‖ · ‖S = ‖(1 −∆π)p/2 · ‖2, where −∆π denotes the
periodic Laplacian on [−π, π]d and p ≥ 1. Now the problem becomes

(1.5) argmin{Cu=b}
1

2
‖u‖2S ,

where the indices have again been dropped for ease of reading. The constrained
optimization problem (1.5) can be reformulated as the unconstrained minimization

argminu∈RNm ,Λ∈RNΛ

1

2
‖u‖2S + Λ>

(
Cu− b

)
upon introduction of Lagrange multipliers Λ ∈ RNΛ , where NΛ = NΩ

m +NΓ
m. A direct

computation yields the saddle point system

(1.6)

[
S C>

C 0

] [
u
Λ

]
=

[
0
b

]
,

where S is the (invertible) operator corresponding to the norm ‖·‖S . Many techniques
exist to solve such systems; see [1]. The simplest of these consists of forming the Schur
complement, CS−1C>, and of then obtaining the regularized normal equation

(1.7) u = S−1C>
(
CS−1C>

)−1
b.

Now, recalling that C and C> are truncated differential operators (more precisely,
containing differentiations, evaluations on subdomains, and extensions), we see that
the effect of the norm is to replace the operator C>, which, upon being hit by C,
is the cause of the oscillations in the straightforward method, by the regularized
operator S−1C>, which can be captured numerically to a higher degree of accuracy
(no oscillations) when hit by C.

Remark 1.2. To illustrate the effect of regularization in the one-dimensional set-
ting of Remark 1.1, consider the minimizer v corresponding to the objective functional
given by the higher order expression 1

2

[
‖v‖22 + ‖∂xv‖22

]
. Proceeding in a similar way

as in Remark 1.1, v is seen to be given by

(1− ∂xx)−1
π

{
− ∂xx ◦ ext0

[
SD(u+ f)

]
+

∑
j=−1,1

j
[(
∂xSD(u+ f)

)
(j)− ux(j)

]
δj

}
.

The singular terms are now regularized. Observe that the index in the regularizer
indicates inversion of the operator in the periodic sense and that SD is defined as in
Remark 1.1.

Remark 1.3. Formula (1.7) can be used as a starting point without any knowledge
of a norm generating the operator S. One can choose any convenient smoothing kernel
acting on (generalized) functions defined on the box B instead of S−1.

Remark 1.4. Although in this paper the method was implemented on the periodic
torus using Fourier spectral methods, we emphasize that the method could easily be
implemented in any container domain which admits the following:
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A452 DANIEL J. AGRESS AND PATRICK Q. GUIDOTTI

• Efficient and well-developed discretizations of the differential operators and
of the interpolation operators.

• An efficient smoothing operator S which enforces the regularity of functions
on the grid.

In section 4.3, we use the finite element method to enforce the interior PDE in a
weak sense. This allows us to look for an H3 solution, where the strong pointwise
formulation of the equations cannot be used for d ≥ 2. Finally note that, in general,
spectral methods will be most efficient for problems where a uniform grid is used,
while finite difference and finite element methods are best deployed when adaptivity
is useful or, in the case of the finite element method, when only a weak formulation
is possible.

2. The smooth extension embedding method. We now give a detailed de-
scription of the implementation of our method. As described in subsection 1.1 and
equation (1.3), the original BVP on Ω is rewritten as an optimization problem on an
encompassing domain B, given by

argminu∈RNm ,Λ∈RNΛ

1

2
‖u‖2S + Λ>

(
Cu− b

)
,

where ‖ · ‖S is a higher order regularizing norm. In this paper we have used the Hp

norms given by
‖ · ‖Sp := ‖(1−∆π)p/2 · ‖2.

As mentioned in subsection 1.1, this leads to the saddle point system[
Sp C>

C 0

] [
u
Λ

]
=

[
0
b

]
.

We begin by describing the specific discretizations which we used to obtain the op-
erators C, C>, and S. We will then describe some aspects regarding the choice of a
smoother; in particular, we will discuss the proper order p to use for a given problem.

2.1. Discretization of the domain. As described in the introduction, we begin
by embedding the domain Ω into a torus B in order to make use of spectral methods
and of the Fourier transform. The periodicity box B is discretized with a uniform
grid Bm. The boundary Γ is approximated with a discretization Γm, which is just a
set of NΓ

m points lying on ∂Ω. In practice, it is best for these points to be uniformly
distributed across the boundary. In two dimensions, this can be accomplished easily
by equally spacing points along an arc length parametrization of the curve. In three
dimensions, equally distributing the points around a surface is more challenging, al-
though straightforward algorithms exist for obtaining roughly equally spaced points
on a given surface; see, for example, [17].

A choice also needs to be made concerning the density of boundary points, that
is, the value of NΓ

m. When using an insufficient number of points on the boundary,
the accuracy suffers, while too many points can drive up the condition number. In
this paper, where our encompassing domain is [−π, π)2, we have found a density of
m
4π boundary points per unit length, where m is the number of grid-points along
one dimension, to be most effective. This guarantees that 1–2 regular grid-points lie
between any two boundary points and thereby allows the regular grid Bm to easily
“distinguish” the different boundary points and to keep the condition number rela-
tively low. In Figure 1, we show the discretization of the unit disc and of a star-shaped
domain. For better visualization, we have only plotted [−1.3, 1.3]2, as opposed to the
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Table 1
Number of collocation points used in the discretization of the disc of radius 2 used in subsec-

tions 4.2 and 4.3. Nm is the size of the full computational grid, NΩ
m is the number of interior

collocation points, and NΓ
m is the number of boundary collocation points.

Nm NΩ
m NΓ

m Nm NΩ
m NΓ

m

162 81 17 2562 20,865 257
322 325 33 5122 83,421 513
642 1,305 65 10242 333,669 1,025

1282 5,209 129 20482 1,335,029 2,049

entire computational domain [−π, π)2. In Table 1, we show the number of boundary
collocation points used to discretize the disc of radius 2 in the numerical experiments
in subsections 4.2 and 4.3. In three-dimensional problems, we have found that with

a grid of size m3 points on [π, π)3, a boundary spacing of m2

2π2 per unit area is most
effective.

Concerning the optimal size of the buffer zone B \ Ω, we note that it needs to
allow for a smooth function on Ω to be extended into a smooth periodic function of the
bounding periodicity box. If the buffer is too small, the extension will necessarily have
large Hp norms and thereby decrease the accuracy of the solution. In the numerical
experiments of subsections 4.2 and 4.3, we have studied a disc of radius 2. We have
found that with a radius larger than 2.75, the accuracy of the solution begins to
decrease. The need for a large buffer can be removed if one used a discretization
which does not require periodic boundary conditions, such as a Chebyshev grid or a
finite difference grid.

2.2. Discretization of the PDE operator. We recall that

C =

[
A
B

]
,

where A is a discretization of the interior differential operator A, and B is a discretiza-
tion of the boundary operator B. As we explained in the introduction, the advantage
of using a fictitious domain method is that these discretizations can be carried out
in a straightforward and efficient way on a regular grid. We will discuss how to form
each of these discretizations.

2.2.1. Discretization of interior PDE A. Recall that A is a second order
differential operator of the form

Au(x) =

d∑
i,j=1

aij(x)∂i∂ju+

d∑
i=1

bi(x)∂iu+ c(x)u.

To discretize A, we will need to introduce the restriction operator

RΩ : RNm → RN
Ω
m ,

which maps a function defined on Bm to its values at the points of Ωm. We now let Di

be the discretization of the derivative ∂i on Bm. We let āij , b̄i, and c̄ be the vectors
containing the values of the functions u, aij , bi, and c, respectively, at the points of
Ωm. Similarly, let ū be a discrete function defined on Bm, and let v̄ be a discrete
function defined on Ωm. The discretization of A is then given by

Aū =

d∑
i,j=1

āijRΩDiDj ū+

d∑
i

b̄iRΩDiū+ c̄RΩū.
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Similarly,

A>w̄ =

d∑
i,j=1

D>j D
>
i R
>
Ω āijw̄ +

d∑
i

D>i R
>
Ω b̄iw̄ +R>Ω c̄w̄.

Here, R>Ω is the transpose of RΩ and amounts to an extension by 0 from Ωm to Bm.
The derivative matrices Di can be obtained using any straightforward method

to implement discretization on the background grid Bm. For a regularly spaced grid
on the periodic box, which we adopt in this paper, the matrices Di are a spectral
discretization implemented via the use of the FFT. Such a discretization allows one
to achieve up to spectral accuracy. Limitations in accuracy are, of course, imposed by
the regularity of the solution and the regularity of the selected smoothing operator.
Finite difference discretizations, such as the five point stencil, offer an alternative to a
spectral discretization and would enhance efficiency. In the numerical experiments in
subsections 4.1 and 4.2 below, we evaluate the derivatives appearing in the operator A
spectrally. More specifically, whenever taking the Laplacian, for instance, we compute

(−∆)m =
(
Fm
)−1

diag
((
|k|2
)
k∈Zdm

)
Fm,

where Fm is the discrete FFT, and k ∈ Zdm is the frequency vector at discretization
level m. In subsection 4.3, where a weak formulation of the BVP is studied, derivatives
will be taken by means of a five point stencil. This is equivalent to a finite element
discretization and will therefore provide a proper discrete weak formulation of the
problem.

2.2.2. Discretization of the boundary operator B. Recall that B is a
boundary operator on Γ given by

Bu = a(y)γΓu+ b(y)∂νΓu.

B is a discretization of B on the set Γm ⊂ Γ. Since the boundary points Γm do not
lie on the regular grid, interpolation operators are needed when imposing (discrete)
boundary conditions. We let

Iyi : Bm → R

be an interpolant which estimates a grid function at yi. As before, we denote by ā
and b̄, respectively, the vectors of values of the coefficients a and b at the points of
Γm. Finally, we let ν̄ be the vector of values of ν at the points Γm. The ith row of B
is then given by

Bi• = āiIyi + b̄i

d∑
j=1

(ν̄i)jIyiDj .

As before, because we are interpolating on a regular grid, the interpolation operators
are simple. Linear, cubic, or spectral interpolation can be used. The latter is used in
subsection 4.1, where we compute the QR factorization of the explicit matrices. We
do this in order to demonstrate the high order of convergence that the method can
achieve. In subsections 4.2 and 4.3, where iterative methods are implemented, cubic
polynomial interpolation is used in order to sparsify the interpolation matrix and
thereby allow for computation on denser grids. When using polynomial interpolation,
the computational complexity of the operator B is O(NΓ

m).
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2.3. Discretization of the smoother Sp. We now discuss the discretization
of the continuous smoother

S−1
p u = (1−∆π)−pu.

This choice is made because Sp is diagonalized by the Fourier transform, leading to
simple and efficient computations. In particular, we let k ∈ Zdm be the vector of
frequencies on the discrete grid Bm. Then, the discrete smoother is given by

S−1
p b =

(
Fm
)−1

diag
[
(1 + |k|2)−p

]
Fmb.

Using the FFT, we see that application of this operator has computational complexity
O(Nm logNm).

2.4. Choice of p for the smoother Sp. We recall that the purpose of the
smoother is to enforce the Hp

π regularity of the selected solution to the underdeter-
mined problem. Thus, when p is chosen to be larger, a more regular approximate
solution is produced, and the true solution can be approximated with a higher order
of convergence. In particular, in accordance with Remark 1.3, if the true solution
u ∈ Hp+2, then using the smoother Sp will yield an order p convergence of the L2

error. This will also be demonstrated experimentally in subsection 4.1. Thus, it is
advantageous to use p, which gives the optimal order of convergence for the regularity
class of the true solution u. For example, if the true solution u ∈ H6, one should use
the S4 smoother to obtain fourth order convergence of the L2 error.

Although the order of convergence increases with p, using a higher order smoother
greatly increases the condition number of the resulting matrices. In particular, the
matrix Sp will have a condition number which grows like mp (before preconditioning),
where m is the number of grid-points along each direction. Thus, using a larger p
will generally require more iterations for convergence than using a smaller p on an
equivalent grid. Furthermore, for a given grid size, the order p of the smoother cannot
be pushed too high without hitting the limits of numerical precision. We recall that the
smoother is given by (1−∆π)−p. In Fourier space, this corresponds to multiplication
by the function (1 + |k|2)−p. If k∗ is the largest mode, as soon as |k∗|−2p drops below
machine precision, which is roughly 1e − 16, some matrix entries can no longer be
captured numerically, and the benefits of accuracy are lost. For example, on a grid
of size 642, the highest order smoother which can be used is p = 5 (a way around
this issue will be discussed in subsection 3.2). Thus, the smoother must be chosen
to balance the greater numerical accuracy obtained with the numerical issues which
arise as p is increased. These issues will be more fully discussed in subsections 3.1
and 3.3.

Remark 2.1. As discussed above, the order of convergence of the solution is con-
strained by the regularity of the true solution, the order of the smoother, the inter-
polation operators, and the differential operators. To avoid wasting computational
resources, the order of accuracy of all the various discretizations should be made to
match.

3. Methods for solving the linear system. As mentioned previously, in the
proposed method the BVP is reformulated as the saddle point system[

Sp C>

C 0

] [
u
Λ

]
=

[
0
b

]
.
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Such problems arise in many areas of computational mathematics and particularly
in optimization. Many techniques exist for solving this system implicitly without
forming S−1

p . However, because of our special choice of smoothing operator, S−1
p can

be evaluated explicitly using the FFT. We describe here two methods for solving such
systems.

3.1. The Schur complement method. The system can be most simply solved
by forming the Schur complement, CS−1

p C>. It is straightforward to see that the
solution then satisfies

u = S−1
p C>

(
CS−1

p C>
)−1

b.

The Schur complement CS−1
p C> is a symmetric positive definite matrix and can there-

fore be inverted using the conjugate gradient method. As mentioned previously, all
operators can be implemented using sparse matrices and the FFT. The Schur comple-
ment matrix can therefore be applied implicitly very efficiently. Although the matrix
Sp is of order 2p and is therefore ill-conditioned for large grids, straightforward precon-
ditioning exists which allows the preconditioned conjugate gradient (PCG) method to
converge quickly; see subsection 3.3. Thus, the PCG method can be used to efficiently
compute the solution on very dense grids. In the numerical experiments of section 4,
we use the PCG method with the preconditioner described in subsection 3.3 in order
to compute the solution.

3.2. The pseudoinverse method. Alternatively, the solution satisfies

u = S−1/2
p (CS−1/2

p )+b,

where (CS
−1/2
p )+ is the pseudoinverse of CS

−1/2
p . To see this, we consider the QR

decomposition of the matrix

S−1/2
p C> = QR.

Here, using the notation of subsection 1.1, Q ∈ RNm×NΛ
m is an orthogonal matrix

satisfying QTQ = I, while R ∈ RNΛ
m×N

Λ
m is an upper triangular matrix. We recall

that the pseudoinverse of CS
−1/2
p is given by Q(R>)−1. We then see that

S−1
p C>(CS−1

p C>)−1 = S−1/2
p QR(R>Q>QR)−1

= S−1/2
p QRR−1(R>)−1

= S−1/2
p Q(R>)−1

= S−1/2
p (CS−1/2

p )+.

The pseudoinverse can be calculated by using either the QR or the SVD decomposi-
tion. Furthermore, these computations can be performed by either using the explicit
matrices or implicitly using sparse SVD algorithms. Using the pseudoinverse reduces

the condition number of the matrix CS
−1/2
p to the square root of that of the full

Schur complement. This makes it feasible to use denser grids before the problems of
ill-conditioning described in subsection 2.4 set in. In the numerical experiments of
subsection 4.1, the pseudoinverse method is used in addition to the Schur complement
method. In order to compute the pseudoinverse, the QR decomposition of the explicit

matrix CS
−1/2
p is obtained first.
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Remark 3.1. The pseudoinverse method can also be viewed as a nonsymmetric
collocation method (also known as Kansa’s method) for solving PDEs. Given a kernel
K : Ω× Ω→ R, solutions are sought in the form

u =

|Bm|∑
i=1

αiK(·, xi).

This results in a nonsymmetric matrix, whose analysis is more difficult than that
of symmetric collocation techniques. The pseudoinverse method can be viewed as a
nonsymmetric collocation method, where the kernel function is given by

Kp(·, x) = (1−∆π)−p/2δx.

Thus, in this case the nonsymmetric collocation method is seen to be equivalent to
the symmetric one.

3.3. Preconditioning for the Schur complement method. We now dis-
cuss the appropriate preconditioner for the PCG algorithm in the Schur comple-
ment method. As observed in subsection 3.1, the normal matrix CS−1

p C> is ill-
conditioned and requires a good preconditioner to be inverted using the conjugate
gradient method. The ill-conditioning stems from the use of the high order operator
S−1
p and from the difference in order between the boundary and the interior operators.

Think of the operator CS−1
p C> as a block matrix

CS−1
p C> =

[
AmS−1

p (Am)> AmS−1
p (Bm)>

BmS−1
p (Am)> BmS−1

p (Bm)>

]
=

[
C1 C2

CT2 C3

]
.

As S−1
p represents an operator of order −2p and Am one of order 2, the matrix C1

corresponds to an operator of order 4−2p, C2 to one of order 2−2p, and C3 to one of
order −2p (when choosing a discrete boundary operator Bm discretizing a continuous
one of order 0). In general, if an operator is of order −2p, the condition number of its
matrix approximation will grow like a polynomial of degree 2p as the grid size increases
(for example, on a grid of size m, the largest eigenvalue of the Laplace operator will
be of size m2). Thus, the large order, together with the mismatch in scaling, causes
a very large condition number. We will describe a simple preconditioner which works
effectively for S2, S3, and S4. The preconditioning consists of finding approximate
inverses to the C1 and C3 blocks independently. Specifically, we use the preconditioner

C̃−1 =

[
C̃−1

1 0

0 C̃−1
3

]
,

where C̃−1
1 and C̃−1

3 are approximate inverses to C1 and C3, respectively. The general
philosophy consists of preconditioning these two operators so that they become order
0.

We begin by describing C̃−1
1 . The matrix C1 depends on the order of the smoother

we have chosen. For S2, we note that the matrix C1 is of order 0. Thus, no precon-
ditioning is necessary, and C̃−1

1 can be taken as the identity. For S3 and S4, we note
that the operator C1 is the discretization of a differential operator of order 4 − 2p.
We wish to precondition in such a way as to reduce the order of the operator to 0.
Thus, we define the preconditioner

C̃−1
1 u =

(
1−∆Ω

) 2p−4
2 u.
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A458 DANIEL J. AGRESS AND PATRICK Q. GUIDOTTI

Here, ∆Ω is the Laplace operator on Ω. In order to implement it, we use the domain
discretization Ωm = Bm ∩Ω and a finite difference scheme to discretize the Laplacian
on Ωm. In the examples the five point stencil (seven point in three dimensions) was
chosen.

As for an approximate inverse for the C3 block, we will consider a Dirichlet
problem, where the boundary operator B consists of evaluations on the boundary.
The discrete boundary points belonging to Γm will be denoted by yi for 1 ≤ i ≤ NΓ

m.
We recall that

Bm : RBm → RΓm and Sp : RBm → RBm .

Here the rows of Bm are discretizations of the delta distribution supported at the
various boundary points. Thus, the matrix C3 = BmS−1

p (Bm)> is a discretization of
the collocation matrix

Mij = Kp(yi, yj) = 〈δi,S−1
p δj〉.

Thus, an excellent preconditioner for the C3 block is obtained by inverting the explicit
collocation matrix. Although this involves solving a collocation problem, seemingly
defeating the whole purpose of discretizing the collocation method as we do in this
paper, two crucial points must be recognized. First, the new collocation problem only
resides on the boundary. Thus, the number of points is only NΓ

m, as opposed to the
NΩ
m + NΓ

m points of the full BVP. This dimensional reduction allows working with

far denser grids. Second, because the matrix C̃−1
3 is only used as a preconditioner,

we do not need to actually calculate the inverse of the collocation matrix; any crude
approximation or even any pseudodifferential operator of the proper order will do.
Finally, as we will discuss shortly, the collocation matrix that is inverted does not
depend on the actual differential and boundary operators arising from the problem,
so a standard one can be used for all such operators.

In all the numerical experiments performed in this paper, we use few enough
boundary points that it is possible to directly invert the collocation matrix. To build
the latter, observe that S−1

p is given by convolution with a kernel. Thus, it suffices
to calculate it at one point and simply shift its “center” to the different collocation
points. A discretization of the fundamental solutions of the continuous smoother Sp,
given by

h(y) = (S−1
p δ)(y),

is computed on a dense grid. In our experiments we use a grid of size 40962 in two
dimensions and 5123 in three dimensions. This solution can be stored in a lookup
table. The collocation matrix is then given by

Mij = h(yi − yj),

where the values are interpolated from those in the lookup table.
For the Neumann and Robin problems, we note that the order of the matrix C3

is decreased by 2, because both C and C> evaluate one derivative on the boundary.
Thus, rather than using the function S−1

p δ in the collocation matrix, we instead

resort to the function S−1
p−1δ. See the supplementary material (M130084SupMat.pdf

[local/web 2.01MB]) for the effect of this preconditioning on the Robin BVP.
Using the described preconditioning technique, the PCG method converges fast

enough for an efficient evaluation on very dense grids. Numerically, we will find
in subsection 4.1 that preconditioning is most effective for the S2 smoother. As
mentioned above, for a second order BVP, the matrix corresponding to the interior
equations “is” order 0 with no preconditioning. As p increases, the preconditioning is
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somewhat less effective. In general, the ill-conditioning can be somewhat improved by
increasing the distance between the boundary points. Another approach to improving
the condition number consists of modifying the smoother to (1 − ε∆π)−p/2 for a
parameter 0 < ε < 1. This did not prove necessary for the problems studied here.
We refer the reader to Table 4 for actual condition numbers of the preconditioned
matrices and to the numerical experiments for the CPU times of the corresponding
computations.

4. Numerical experiments. Next, several numerical experiments are discussed
which demonstrate the effectiveness of the proposed method. Several more are pre-
sented in the supplementary material (M130084SupMat.pdf [local/web 2.01MB]).
Recall that the order of convergence of the method depends on the regularity of
the solution as well as on the choice of smoother Sp. We will begin by considering a
Dirichlet BVP with analytic solution; with this choice, the orders of convergence of
the different smoothers can be easily compared. Next, we will present two problems
with lower global regularity. First, a BVP with global H4 solution will be presented
and solved using the S2 smoother. It exhibits a convergence order of 2. Next, a
function with H3 regularity will be used. In this case, the equation cannot be verified
pointwise; instead, a weak formulation will need to be introduced.

In the supplementary material (M130084SupMat.pdf [local/web 2.01MB]), we
include four additional experiments. First, a Robin BVP with nonconstant coefficients
with analytic solution and a three-dimensional Dirichlet BVP with analytic solution
will be presented. Next, we will solve Dirichlet BVPs with H6 and H5 solutions.
These will be solved with the S4 and S3 smoothers, respectively, and will exhibit
convergence orders of 4 and 3, respectively; see Remark 1.3.

In the latter experiments, because it is difficult to explicitly write down a function
which is globally Hp, we instead generate such functions by taking the inverse Fourier
transform of a random sequence of coefficients which decay like (1 + |k|2)−p/2 and by
restricting the resulting function to the domain Ω. This is done on a dense grid of
sizes 81922. The right-hand side is obtained by evaluating the interior and boundary
differential operators using spectral methods at the collocation points.

In subsections 4.2 and 4.3, the proposed method is compared with a baseline
multiquadric (global) radial basis function (RBF) method in order to demonstrate
its effectiveness. For the purpose of comparison, we have restricted these latter ex-
periments to constant coefficient Dirichlet problems. We note that the RBF method
has not been implemented for denser grids due to the memory and computational
constraints of working with dense matrices; see subsection 5.2. We also compare the
proposed method with an RBF-FD (finite difference) method using a stencil of size
25 and using third order polyharmonic splines as RBFs. The solution is calculated
using the BiCG algorithm. We note for the RBF-FD, we were unable to obtain con-
vergence for the densest grid with 40962 points. Furthermore, on the grid of size
20482, time to convergence was 3000 seconds, which is about 50 times slower than
our implementation of SEEM.

All numerical experiments are performed on an Intel i7-7700HQ CPU. Experi-
ments were implemented in Python, using the Numpy and Scipy libraries. For the
comparisons with the RBF-FD method, we used a publicly available Python RBF
library. For the PCG and BiCG methods, we used a tolerance of 1e− 8 as a stopping
criterion.
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Fig. 3. Convergence of the L2 and L∞ relative errors for different order smoothers solving
(4.1). The light dotted lines are reference lines of slope 1

mp
, where m is the number of grid points

along one dimension.

4.1. A Dirichlet BVP with analytic solution. The first choice of u is

u(x, y) = x2 − y2, (x, y) ∈ D.

Since this function is analytic, any Sp could be used to give p order convergence.
Although a problem as smooth as this could be trivially solved with a spectral order
of convergence by simply collocating polynomials or other smooth RBFs, we still
perform the experiment to demonstrate numerically how the order of convergence
depends on the smoother Sp. We study the Dirichlet problem on the unit disc, with
the given choice of u. The right-hand side is given by

(4.1)

{
−∆u = 0 in D,

u = x2 − y2 on ∂D.

We begin by solving the problem using explicit matrices and the pseudoinverse
method, as described in subsection 3.2. We show the convergence of the relative L2

and L∞ errors for the different smoothers Sp with p = 2, 4, 6, 8, 10. As we are using
explicit matrices for this experiment, we have limited our grid size to 1282 points.
We show the errors in Figure 3 and in Tables 2 and 3. The order is calculated by
comparing the errors on the densest grid to those on the sparsest grids. We next turn
to demonstrating the effectiveness of our preconditioning techniques. We solve the
same problem described in (4.1) using the Schur complement method with a PCG
iteration, with the preconditioner described in subsection 3.3 and the Sp smoother for
p = 2, 3, 4. For grids up to 1282, we record the condition number of the preconditioned
Schur complement matrix. We then solve the problem on grids up to size 5122 and
record the CPU times together with the number of PCG iterations for each of the
three smoothers. As the grid becomes denser, computational times increase due to
the computation of the Schur complement matrix and of its preconditioner as well as
to the larger number of iterations needed for convergence. We note that, as described
in subsection 2.4, the higher order smoothers are poorly conditioned and require more
iterations to converge, although they achieve greater accuracy. The results are listed
in Table 4.

4.2. A Dirichlet BVP with H4 solution. We now consider a problem with
lower global regularity, where our method is advantageous. To generate a globally H4
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Table 2
Relative L2 error solving (4.1).

Grid size
Relative L2 error

S2 S4 S6 S8 S10

162 5.00E − 02 3.79E − 03 1.02E − 03 6.78E − 04 7.96E − 04
322 2.41E − 02 6.19E − 04 3.19E − 05 5.74E − 06 3.01E − 06
642 2.29E − 03 1.12E − 05 2.00E − 07 1.55E − 08 2.07E − 09
1282 5.00E − 04 8.58E − 07 4.64E − 09 9.82E − 11 4.40E − 12

Order 2.21 4.04 5.92 7.57 9.14

Table 3
Relative L∞ error for (4.1).

Grid size
Relative L∞ error

S2 S4 S6 S8 S10

162 5.96E − 02 5.70E − 03 1.62E − 03 1.08E − 03 1.27E − 03
322 4.36E − 02 1.14E − 03 5.11E − 05 9.18E − 06 4.85E − 06
642 4.94E − 03 2.00E − 05 4.57E − 07 3.27E − 08 3.67E − 09
1282 1.53E − 03 2.67E − 06 1.01E − 08 1.77E − 10 8.00E − 12

Order 1.76 3.69 5.76 7.52 9.08

function, we take a random Fourier series {sij} with −2047 ≤ i, j ≤ 2048, where we
impose the decay rate

|sij | ≤
1

(1 + |i|2 + |j|2)3
.

We then use the inverse discrete Fourier transform to generate a globally H4 function
defined on a grid of size 40962. We use this function as our solution. A contour plot
of the (unrestricted) function can be seen in Figure 4. We then solve the Dirichlet
BVP on the disc of radius 2. The Laplacian of u as well as its values on the boundary
are then generated from the original random Fourier series. As u ∈ H4, in accordance
with Remark 1.3 and the considerations of subsection 2.4, we use the S2 smoother
and expect second order convergence for the L2 error. The calculated L2 and L∞
errors as well as the CPU times are shown in Figure 5 and Table 5. In the graph, we
compare the convergence with that of a multiquadric RBF with scaling parameters
ε = 3 and 5. These values of ε were chosen for the best accuracy. Grids of size larger
than 1282 were not solved using the RBFs due to the RAM constraints of the dense
matrices.

4.3. A Dirichlet BVP with H3 solution. Next, consider u ∈ H3 generated
using the same technique used in the previous section. A contour plot of the (unre-
stricted) function can be seen in Figure 6. In this case, −∆u ∈ H1 and thus cannot be
defined pointwise. We therefore need to turn to a weak formulation of the problem.
We proceed as follows. Rather than imposing the pointwise conditions

−∆u(xi) = f(xi), xi ∈ Ωm

(because f cannot be evaluated at a point), we instead resort to a weak formulation
on the interior. Letting {φi} be the standard finite element basis of piecewise linear
functions on the regular grid Bm, we seek a solution of the form

u =

Nm∑
i=1

ciφi.
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Table 4
CPU times, number of iterations, and condition number for the Schur complement PCG method

solving (4.1) using the method described in subsection 3.1. The condition number is that of the

preconditioned Schur complement matrix C̃−1/2(CS−1
p C>)C̃−1/2.

Grid size
PCG iterations CPU time Condition number
S2 S3 S4 S2 S3 S4 S2 S3 S4

162 18 22 27 0.01 0.01 0.01 6 17 61
322 25 36 51 0.01 0.03 0.04 8 22 84
642 27 41 73 0.02 0.05 0.07 10 24 152
1282 31 47 99 0.06 0.11 0.25 12 27 305
2562 34 48 158 0.53 0.64 2.08 - - -
5122 38 69 347 2.28 5.41 34.82 - - -
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Fig. 4. Contour plots of H4 solution.

We then take the subset of those φi’s, the support of which is entirely within the
domain Ω. We denote this set Ωm and set |Ωm| = NΩ

m. The interior conditions∫
Ω

∇u∇φi =

∫
Ω

fφi

are imposed for φi ∈ Ωm. Here, the integral
∫

Ω
fφ is calculated using Fourier series on

a dense grid. The boundary constraint is unchanged from the strong formulation. In
line with our proposed method, we then seek a solution which minimizes the discrete
H2 norm and is computed using the discrete Fourier transform of c. Notice that for
a uniform grid, the differentiation matrix for the basis φi coincides with the standard
five point stencil finite difference discretization. We solve the Dirichlet BVP on the
disc with radius 2. The resulting L2 and L∞ errors, as well as the CPU times, are
shown in Figure 7 and Table 6. We note that in [9], the claim is made that the
usage of meshfree methods for second order elliptic problems is restricted to u ∈ Hp

with p > 2 + d
2 , which leads to a p − 2 order of convergence of the L2 error. Here,

using a discrete collocation procedure, we are able to treat weaker solutions as well,
which leads to second order convergence for an H3 solution as opposed to first order
convergence for the meshfree implementation of [9] for H3+ε solutions.

Remark 4.1. Analytically, only nodal basis functions which are compactly sup-
ported inside Ω should be used. However, numerically it is better to include any basis
functions with support intersecting Ω. For such basis functions φ, we impose the
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Fig. 5. Plots of relative L2 and L∞ errors for H4 solution. The dotted reference lines have a
slope 1

m2 , where m is the number of grid points along one dimension.

Table 5
Error and computation times for H4 solution.

Grid size L2 error L2 order L∞ error PCG iterations CPU time
162 8.23E − 03 - 1.56E − 02 26 0.36
322 2.21E − 03 1.65 4.96E − 03 27 0.24
642 8.84E − 04 1.64 1.60E − 03 28 0.29
1282 3.42E − 04 1.52 5.55E − 04 29 0.43
2562 1.16E − 04 1.75 1.65E − 04 31 0.89
5122 7.36E − 06 2.67 2.59E − 05 31 2.53
10242 2.54E − 06 1.89 6.99E − 06 34 10.05
20482 9.36E − 07 1.92 1.84E − 06 44 47.87
40962 2.05E − 07 2.00 4.61E − 07 58 277.31

condition

c

∫
B
∇u∇φ =

∫
Ω

fφ, where c =

∫
Ω
φ∫

B φ
.

5. Relation to other methods.

5.1. Symmetric kernel-based collocation. The method described in this pa-
per falls within the theoretical framework of symmetric kernel-based collocation. The
latter was mainly developed by Franke and Schaback in [10, 9] in the context of mesh-
free methods. For the benefit of the reader, we give a brief outline of the theory of
kernel-based collocation and describe how our method fits into the general theory. We
will then describe how the proposed method differs from existing meshfree methods.

A symmetric, positive definite kernel K on a domain Ω is a function

K : Ω× Ω→ R,

which satisfies
(i) K(x, y) = K(y, x), x, y ∈ Ω; and
(ii)

∑n
i=1

∑n
j=1 cicjK(xi, xj) ≥ 0 for any set of distinct points {x1, . . . , xn} ⊂ Ω

and for any c ∈ Rn. Equality holds only if c = 0.
To each positive definite kernel K there corresponds a unique reproducing kernel
Hilbert space. The latter is a Hilbert space NK of functions defined in Ω which
satisfies
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Fig. 6. Contour plots of H3 solution.

24 25 26 27 28 29 210 211

Grid Size

10 5

10 4

10 3

10 2

10 1

L 2
 E

rro
r

SEEM
Global RBF
RBF-FD

24 25 26 27 28 29 210 211

Grid Size

10 5

10 4

10 3

10 2

10 1

L
 E

rro
r

SEEM
Global RBF
RBF-FD

Error for H3 function.

Fig. 7. Plots of relative L2 and L∞ errors for H3 solution. The dotted reference line have a
slope 1

m2 , where m is the number of grid points along one dimension.

(i) K(·, x) ∈ NK for x ∈ Ω; and
(ii) f(x) = 〈f,K(·, x)〉 for f ∈ NK.

Given a symmetric positive definite kernel on Ω, in symmetric kernel-based colloca-
tion, a BVP is discretized by selecting two sets of collocation points,

Ωm = {x1, . . . , xNΩ
m
} ⊂ Ω and Γm = {y1, . . . , yNΓ

n
} ⊂ Γ.

The operator C is defined to act as A on Ωm and as B on Γm. A solution is then
sought in the form

ũ(·) =

|Z|∑
j=1

αjCzjK(·, zj),

where Z = Ωm ∪ Γm, and the coefficients αj are chosen so that C(ũ)(zj) = bj for
zj ∈ Z. Here b is the right-hand side of the BVP evaluated at the points of Z. In
order to obtain the unknown coefficients αj , one solves the linear system Mα = b,
where the collocation matrix M is given by

(5.1) Mij = CziCzjK(zi, zj).
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Table 6
Errors and CPU times for H3 solution.

Grid size L2 error L2 order L∞ error PCG iterations CPU time
162 4.04E − 02 - 6.66E − 02 25 0.24
322 1.21E − 02 1.74 1.69E − 02 27 0.18
642 3.61E − 03 1.75 5.82E − 03 28 1.36
1282 1.03E − 03 1.81 1.73E − 03 29 0.54
2562 2.79E − 04 1.89 5.49E − 04 31 0.85
5122 7.45E − 05 1.91 1.60E − 04 31 2.2
10242 1.92E − 05 1.95 4.18E − 05 34 11.4
20482 4.12E − 06 2.22 9.56E − 06 45 59.84

As shown in [20, Chapter 13], the solution ũ obtained through this process is the
‖ · ‖NK -minimizing function satisfying C(ũ)(zi) = bi for zi ∈ Z. In the special case
where NK is the Sobolev space Hp+ε for 0 < ε < 1, the following convergence theorem
holds.

Theorem 5.1. If p > 2 + d
2 , NK = Hp+ε, C is a second order elliptic differential

operator, u ∈ Hp+ε, and ũ is the NK norm minimizing function satisfying

C(ũ)(zi) = bi,

then
‖u− ũ‖L2 ≤ Chp+ε−2(‖f‖Hp+ε−2 + ‖g‖

Hp+ε− 1
2

),

where h is the fill distance defined as

h = max

{
sup
x∈Ω

min
z∈Ωm

|x− z|, sup
x∈Γ

min
z∈Γm

|x− z|
}
.

Proof. The theorem is a straightforward corollary of [20, Proposition 11.30], which
states the following.

Proposition 5.2. If p > d
2 + k, if u ∈ Hp+ε(Ω) satisfies u|Z = 0 for some

discrete set Z ⊂ Ω, and if h is the fill distance defined as

h = sup
x∈Ω

min
z∈Z
|x− z|,

then
‖u‖Hk(Ω) ≤ Chp+ε−k‖u‖Hp+ε .

Assume that ũ is theNK norm minimizing function satisfying C(ũ)(zi) = bi. First,
note that by the definitions of ũ and of the operators A and B, and by the estimates
of elliptic regularity, we know that

‖Aũ‖Hp+ε−2 + ‖Bũ‖
Hp+ε− 1

2
≤ ‖ũ‖Hp+ε ≤ ‖u‖Hp+ε

≤ C(‖f‖Hp+ε−2 + ‖g‖
Hp+ε− 1

2
).

(5.2)

Then calculate

‖u− ũ‖L2 ≤ ‖u− ũ‖H2

≤ C(‖A(u− ũ)‖L2(Ω) + ‖B(u− ũ)‖
H

3
2 (Γ)

)

≤ Chp+ε−2(‖A(u− ũ)‖Hp+ε−2 + ‖B(u− ũ)‖
Hp+ε− 1

2
)

≤ Chp+ε−2(‖f‖Hp+ε−2 + ‖Aũ‖Hp+ε−2 + ‖g‖
Hp+ε− 1

2
+ ‖Bũ‖

Hp+ε− 1
2

)

≤ Chp+ε−2(‖f‖Hp+ε−2 + ‖g‖
Hp+ε− 1

2
).
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A466 DANIEL J. AGRESS AND PATRICK Q. GUIDOTTI

Here, the second inequality follows from elliptic regularity. The third is an application
of Proposition 5.2. The fourth uses the definitions of f and g, while the fifth uses
(5.2). The theorem follows.

Returning to (1.7) in subsection 1.1, we see that the matrix CS−1C> is a dis-
cretized version of the collocation matrix (5.1) corresponding to the kernel and given
by

K(x, y) = (S−1δ)(x− y).

Both operators C and S are discretized and evaluated on the regular grid. Further-
more, the discrete norm ‖·‖S is a discretization of the continuous norm ‖·‖S , which is
the reproducing kernel Hilbert space norm associated with the kernel S−1. Thus, the
proposed method can be characterized as a discrete version of kernel-based collocation;
the encompassing domain B and the kernel K are chosen so that this discretization
is straightforward and efficient. Our choice of the Sobolev kernels S−1

p = (1−∆π)−p

places us in the setting of Theorem 5.1, which leads to (p − 2) order convergence of
the L2 error.

Because the method fits within the framework of kernel-based collocation, the
convergence results will follow from those of Theorem 5.1 (with an extra term added
to account for the truncation error). However, as discussed in the next section, im-
portant computational benefits will derive from the choice of smoothing kernel and
its discretization.

Remark 5.3. Although Theorem 5.1 only guarantees (p − 2) order convergence
when using the pth order Sobolev kernel, in numerical experiments we observe pth
order convergence instead, provided that the solution u ∈ Hp+2. This has been
demonstrated in subsections 4.1–4.3.

5.2. Comparison with meshfree methods. Symmetric meshfree methods us-
ing RBFs are widely used for scattered data interpolation and for solving PDEs. The
survey books [7, 20] describe both the theory and implementation of these methods.
We give a short overview of some of these methods and focus on those that are most
relevant to the proposed method.

In symmetric meshfree methods, the kernel K is generally chosen to be of the
form

K(x, y) = Φ(|x− y|) = Φ(r),

where Φ : R+ → R is a positive definite function known as the RBF of the method.
Many choices are available including

(i) Gaussians, where Φ(r) = e−cr
2

for some c > 0; and
(ii) multiquadrics, where Φ(r) =

√
1 + cr2 for c > 0.

These functions are often chosen as kernels because it is easy to perform computations
on them. The corresponding collocation matrix M is computed explicitly by eval-
uating CziCzjΦ(|zi − zj |). By using smooth, globally supported kernels, we observe
high rates of convergence in line with Theorem 5.1. One of the advantages of mesh-
free methods is that the collocation points can be chosen arbitrarily. This freedom is
particularly useful when only scattered data is available. Furthermore, the simplicity
of the formulation of the method is very attractive.

When using globally supported RBFs the resulting collocation matrix is dense.
For smooth problems this is not an issue, because the high order of convergence can
achieve high accuracy with very few collocation points. For less smooth problems,
however, where dense grids are necessary to resolve the solution’s behavior, it becomes
impractical to use such dense matrices. Additionally, when the RBF is smooth, the
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collocation matrix is very poorly conditioned and thus severely limits the size of the
set of collocation points; see [7, Chapter 16].

These issues lead to the introduction of a number of successful strategies aimed
at speeding up the inversion of the collocation matrix and at reducing its condition
number. Many of these techniques are described in [7]. Given the large variety of
meshfree implementations, we will only briefly address those that are most pertinent
to the proposed method.

(a) Globally supported RBFs can be replaced by the compactly supported ones as
introduced by Wendland in [19]. In this way, the collocation matrix becomes sparser,
and more collocation points can be used. Unfortunately, convergence only occurs if
the width of the compactly supported functions is held constant; see [7, Chapter 41].
Consequently, the matrix loses its good sparsity properties as the mesh becomes finer.
To remedy this problem, multilevel schemes are used. In these, compactly supported
RBFs with varying supports are used. Those with wide support capture the coarse
details, while those with narrow support capture the fine details. The use of such
multilevel methods can improve the accuracy obtained from compactly supported
RBFs; however, convergence issues still remain (see [7, Chapter 41]).

(b) A number of techniques exist which seek to circumvent the issue of the ill-
conditioning of the collocation matrix by finding clever ways to compute the inter-
polant. These include the contour-Padé algorithm [7, Chapter 17] and the RBF-QR
method [8]. We note that these methods approximate the RBFs using the truncation
of a series expansion. The proposed method, in contrast, is discrete from the onset.

(c) Particularly relevant to us is the NFFT (nonuniform fast Fourier transform)
method. In the NFFT method, the collocation matrix M is evaluated by using the
inverse nonuniform FFT to obtain a Fourier series for the function on the torus. The
kernel, a convolution operator, is then evaluated as a multiplication operator on the
torus. Finally, the NFFT is applied to obtain the function values at the collocation
points. By using this method, the dense collocation matrix can be evaluated with
O(N logN) operations rather than with O(N2). When combined with efficient pre-
conditioning, this method allows for the use of substantially larger grids. We will
discuss the relationship of this method with the proposed one below.

(d) In RBF partition of unity (RBF-PUM) methods or RBF-FD methods, the
global RBF method is localized to create sparse rather than dense matrices. In RBF-
PUM, the global basis functions are multiplied by cutoff functions generated by a
partition of unity of the domain. The resulting basis functions are compactly sup-
ported in a small region of the domain and therefore generate a sparse matrix. In
RBF-FD, a small set of RBF basis functions is chosen at each point. The PDE oper-
ator is evaluated at each point using that point’s chosen RBF functions to generate
a high order finite difference stencil at each point. These methods are quite com-
petitive and are rapidly growing in popularity. However, in localizing the problem,
these methods lose the straightforward representation of the function as a linear com-
bination of RBFs. Furthermore, the interpretation of the problem as a constrained
optimization problem is lost.

In general, these methods evaluate the smoothing operator S−1 as well as the
differential operator C explicitly. In the proposed method, by contrast, these are
evaluated at the discrete level. By choosing the smoothing kernel to be defined on
a finite regular encompassing domain (a torus in the implementations of this paper),
it is possible to obtain a straightforward and efficient discretization of the operators.
The obvious drawbacks are that the method is no longer meshfree and that the mini-
mum distance between collocation points is limited by the distance of the grid-points.
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However, the clear benefit is that the operators can be easily described using sparse
matrices (either through the use of finite differences, of the FFT, or of other sparse
schemes). Furthermore, the use of regular grid-points in the interior allows for simple
preconditioning strategies, which substantially speed up computations. We also men-
tion the following other benefits of the proposed method over common global RBF
methods:

(i) Since all operators are discretized, other techniques for the solution of saddle
point systems can be used. In general, these alternative methods allow one to
solve the system while avoiding the direct computation of the dense matrix
S−1. The availability of such tools should allow for the choice of denser
grids. Another useful tool that becomes viable is QR-factorization, the use
of which is described in subsection 3.2. This technique makes it possible
to replace the symmetric collocation method by an equivalent nonsymmetric
collocation technique. This results in an improvement of the conditioning
of the matrices and additionally provides a link between the symmetric and
unsymmetric collocation methods.

(ii) Since all operators are described on a regular grid, their evaluation is very
simple. For instance, one can use the standard finite difference stencil and
cubic interpolation operators at all points. By contrast, in meshfree meth-
ods, the values CxiCxjΦ(xi, xj) can sometimes be complicated to compute,
particularly for less straightforward differential operators, where many terms
need to be evaluated. This issue is discussed in [7, Chapter 40], for instance.

(iii) Since the kernel matrix is discretized, it can be easily modified and tailored
to fit specific problems. For example, in certain singular problems it may be
beneficial to use weighted Sobolev norms. While such kernels would be quite
difficult to compute explicitly, they can be easily evaluated on a regular grid
in the discrete sense. Another possible modification would be to use non-
quadratic objective functionals. Such modifications are a subject of current
investigation.

While RBF-PUM and RBF-FD are RBF type methods allowing for the use of sparse
matrices, SEEM preserves the global nature of the pure RBF approach. This has
advantages from a theoretical standpoint. Furthermore, we believe that the global
formulation will have applications to a number of problems where an explicit repre-
sentation of the basis functions is useful; work is ongoing in these areas. Additionally,
forming the RBF-FD and RBF-PUM matrices can be a complex process. In the pro-
posed method, only straightforward spectral or finite difference discretizations need
to be considered.

Remark 5.4. As implemented in this paper, the SEEM method uses the Hp norm
on the torus to enforce regularity of the numerical solution. The smoothing oper-
ator is evaluated using the FFT. This allows for the evaluation of all operators in
O(N logN) operations. This implementation is akin to that of the NFFT methods
(see [7, Chapter 28]) in that both use the FFT to evaluate the collocation matrix
M. Indeed, using NFFT methods and efficient preconditioning, it is possible to use
meshfree methods on dense grids with O(N logN) operations. However, our method
distinguishes itself from these existing NFFT methods in several important ways.
First, because all values are first interpolated to the regular grid, the regular inverse
FFT (IFFT) can be used rather than the inverse nonuniform FFT (INFFT), which is
more computationally complex. Second, rather than evaluating RBFs as convolution
operators, we use the simple Sobolev kernels, which are more natural for the torus. As
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pointed out above, this allows for the use of various other computational tools from
the theory of saddle point problems. Third, while the proposed method has been im-
plemented on the torus in this paper, it is a general procedure which can be deployed
with any simple container domain using any discretized/discrete smoothing operator.
For example, a Chebyshev grid could be used instead or, as done in subsection 4.3, a
finite element discretization can be used to obtain a weak formulation of the BVP.

Remark 5.5. The proposed method is reminiscent of some of the techniques used
in the computation of the INFFT; see [14, Chapter 5]. Given scattered data {u(xi)}ki=1

on the torus, the INFFT seeks a Fourier series û which agrees with the data at the
given points. As the problem is generally underdetermined, a Fourier series of minimal
Hp norm is computed instead. The implementation in this paper can be seen as a
generalization of the INFFT algorithm from the simple case of point evaluations of u
to the case of general linear functionals.

5.3. Comparison with other fictitious domain methods. We recall that
fictitious domain methods avoid the problems of mesh generation by embedding
the domain into a simple encompassing computational domain and then using well-
developed discretizations to evaluate the differential operators. At the heart of all
these implementations is the need to resolve the mismatch between the boundary and
the simple regular grid. There is a vast literature on these methods as they can be
implemented in various discretization contexts, admit a variety of distinct practical
implementations within each discretization framework, and be applied to many differ-
ent BVPs of mathematical physics [16]. We refer the reader to the beginning of [15]
for a brief outline of many of these methods. Given the volume of publications, the
choice of references made here was merely motivated by the fact that they contain a
description of the methods’ philosophy and/or many useful additional references in
their introduction. We will give a brief summary of several of these methods and state
where we believe our method, which integrates the theory of kernel-based collocation,
stands out.

5.3.1. Fictitious domain methods. A prominent implementation procedure,
developed by Glowinski and coauthors in [5, 13, 12, 11] and known as the distrib-
uted Lagrange multiplier method, can be described in more detail as follows: think
of the domain Ω as a subset of a larger regular simple domain B, introduce a (uni-
form) discretization of B, and solve the BVP by modifying the data (the right-hand
side and/or the operator A in the prototypical situation considered here), which is
usually done by extending them and by introducing artificially a weighted sum of
carefully chosen source terms supported outside the domain Ω, i.e., in B \ Ω or on
its boundary Γ, by determining the weights (Lagrange multipliers) to ensure that the
boundary condition is satisfied (or at least well approximated). We remark that a
common characteristic of these techniques (and of immersed boundary methods as
well) is that Neumann or Robin boundary conditions are “natural” and straightfor-
ward to include in the formulation, whereas Dirichlet boundary conditions are more
challenging (see, e.g., [6]). These methods clearly have the advantage of not requiring
special care or effort in the choice of discretization for B. An often cited criticism
of this approach is the need for extending the original elliptic operator A and/or
right-hand-side f to corresponding objects defined on the whole of B. This is not
always straightforward, and simple extensions (such as the trivial one by zero out-
side Ω) introduce singularities into the problem and reduce the overall accuracy of
the method. See [2] regarding methods for creating smooth extensions from Ω to B
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for the purpose of implementing fictitious domain methods. Another approach, in
the context of finite elements, consists of modifying the problem’s Dirichlet form to
ensure that (nonnatural) boundary conditions are satisfied by possibly adding direct
or more subtle penalty or penalty-like terms to it, such as, e.g., the so-called Nitsche
method (see [4], for example). The approach proposed here can be viewed as a novel
fictitious domain method which does not require any explicit extension of the data or
modification of the original BVP. Moreover, it makes apparent that the real problem
that any fictitious domain method has to solve is the selection problem among the
infinitely many solutions of the original problem, which are generated as the problem
is viewed in a larger domain where it becomes underdetermined. The direct way in
which this is done here (introduction of a high order smoother) clearly shows how the
order of accuracy chosen for the interior and boundary operators can be recovered in
the extended problem through an affine shift obtained by a natural (from the point
of view of both PDEs and optimization) regularization.

5.3.2. Immersed boundary methods. A very popular method used to deal
with complex geometries, which is one of the motivations of this paper as well, is the
so-called immersed boundary method, by which a problem is extended to a simple
encompassing domain admitting robust and effective discretizations. The extension
is obtained by the use of Dirac distributions in the distance from the boundary (more
precisely, line and surface integral distributions along the boundary) and hence typi-
cally introduces singularities which reduce the overall accuracy of the method to first
order. Recently, approaches have been proposed in which the accuracy is improved by
the use of extension operators that preserve smoothness. We refer the reader to [18]
in particular for an immersed boundary method which includes a smooth extension
method, thereby preserving higher order accuracy, albeit at the cost of significant
additional computational time (in what is called the preparation phase in [18]). We
again point out that the method proposed here does not require any explicit extension
since it identifies the solution among the infinitely many solutions of the extended,
underdetermined problem by simply requiring smoothness in the full computational
domain (and hence across the boundary) along with directly enforcing the PDE in Ω
and the boundary conditions on ∂Ω by resorting only to the regular grid.

6. Conclusion. A new method is proposed for solving general BVP on complex
domains, which avoids the need for generating a mesh. The method is a hybrid of the
fictitious domain approach and kernel-based collocation. As proved in subsection 5.1
and as shown in the experiments in subsection 4.1, the method is able to achieve high
orders of convergence like meshfree methods. Similar to fictitious domain methods,
resulting matrices are sparse, which allows the method to scale to dense grids; the
method can therefore be used to compute solutions with weaker global regularity; see
subsections 4.2 and 4.3. The discretization of the kernel also allows for new insights
into the theory of kernel-based collocation, including making a direct connection be-
tween symmetric and unsymmetric collocation (Remark 3.1) and allowing for weakly
imposing the PDE and hence for computing solutions of weaker global regularity; see
subsection 4.3.
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