
THE SMOOTH EXTENSION EMBEDDING METHOD WITH CHEBYSHEV

POLYNOMIALS

DANIEL AGRESS, PATRICK GUIDOTTI, AND DONG YAN

Abstract. We propose an implementation of the Smooth Extension Embedding Method (SEEM),
first described in [1], in the setting of Chebyshev polynomials. SEEM is a hybrid fictitious do-

main / collocation method which solves general boundary value problems in complex domains

by recasting them as constrained optimization problems in a simple encompassing set. Previ-
ously, SEEM was introduced and implemented using a periodic box (read a torus) using Fourier

series; here, it is implemented on a (non-periodic) rectangle using Chebyshev polynomial ex-
pansions. This implementation has faster convergence on smaller grids. Numerical experiments

will demonstrate that the method provides a simple, robust, efficient, and high order fictitious

domain method which can solve elliptic and parabolic problems in complex geometries, with
non-constant coefficients, and for general boundary conditions. We consider applications to two

and three dimensional boundary value problems as well as an initial boundary value problem via

a genuinely space-time discretization.

1. Introduction

This paper focuses on the implementation of SEEM, previously introduced in [1], in the setting
of Chebyshev polynomials. We begin with a brief overview which serves as a motivation and a
description of SEEM’s philosophy.

1.1. SEEM. We illustrate SEEM by studying a second order boundary value problem.{
Au = f in Ω,

Bu = g on Γ = ∂Ω.
(1.1)

Here, A is a second order differential operator such as, e.g., the Laplace operator −∆, while B
is a boundary operator such as, e.g., the trace for the Dirichlet boundary condition. Efficient
and accurate spectral methods exist to solve (1.1) when Ω is a simple domain, such as a periodic
box or a rectangle. However, for a more complicated Ω, these methods are not directly applicable.
Fictitious domain methods seek to apply numerical procedures to general domains Ω by embedding
into a simpler larger (fictitious) domain, B, for which simple numerical methods (such as spectal
ones, for instance) are available and simple to implement. One of the fundamental obstacles to
such an approach is the fact that the BVP is only defined on Ω, which is a proper subset of
B. Consequently, the original problem only provides an under-determined set of equations for
the unknowns, which are defined on the larger set B. In fact, any extension of the solution u of
the original BVP is a member of the affine family of solutions to the under-determined problem.
Among these are solutions with low regularity and, consequently, discretizations of the problem
will be unable to accurately approximate them. Previous methods have dealt with this issue by
smoothly extending the BVP to the entire fictitious domain in such a way that the problem is no
longer under-determined. However, this introduces the difficulty of properly extending all data of
the problem while guaranteeing that the original equations are still satisfied, see [2].

Key words and phrases. Fictitious domain methods, embedding methods, numerical solution of boundary value
problems, optimization problems, high order discretizations of PDEs, pseudo-spectral methods.

1

2 DANIEL AGRESS, PATRICK GUIDOTTI, AND DONG YAN

SEEM, by contrast, treats the original under-determined problem as a constraint and seeks to
find a smooth representative of the affine family of solutions as the minimizer of an optimization
problem defined on the whole fictitious domain B. Specifically, given a norm ‖ · ‖S on B, the goal
is to solve the constrained optimization problem

argmin{Cu=b}
1

2
‖u‖2S , (1.2)

Here, in order to simplify the notation, the entire BVP is rewritten as one equation

Cu = b, where C =

A
B

 and b =

f
g

 .
We emphasize that the operators A and B are left in their original form, and only constrain the
function on their domains Ω and Γ, respectively. The norm ‖ · ‖S on B is chosen to enforce the
desired degree of regularity. In this way, a smooth solution satisfying the constraint Cu = b is
selected. Because the selected solution is now smooth, a spectral discretization can approximate
it to a high degree of accuracy. As the numerical experiments will demonstrate, the higher the
regularity enforced by the norm ‖·‖S on B, the more accurate the approximation will be (compatibly
with the expected regularity of the solution, of course.).

Next we briefly describe the discretization and the method for solving the optimization problem.
To begin, the encompassing domain B is discretized by a regular grid Bm, selected for the use of
spectral methods. Let

Ωm = Ω ∩ Bm

be the discretization of the interior and

Γm = {y1, . . . , yNΓ
m
}

be a discretization of the boundary obtained by placing roughly equally spaced points yj along
it. See Figure 1 for a depiction of two such grids and the corresponding boundary discretizations:
one consisiting of Chebyshev roots and one consisting of trigonometric functions’ roots, the latter
yielding the standard Fourier grid of equally spaced points. The discrete unknown um can be
thought of as a function on Bm, whereas the discrete data fm and gm as functions on Ωm and Γm,

respectively. Then we take bm =
[
fm, gm

]>
. The operators C and S are discretized as

Cm =

Am
Bm

and Sm, where Am and Bm represent an interior discrete differential operator at the points of
Ωm discretizing A and a discrete realization of the boundary conditions on Γm encoded by B,
respectively. The matrix Sm is a discretization approximating the norm ‖ · ‖S . Spectral discretiza-
tions are chosen for these operators in order to preserve the accuracy of the method. The original
optimization problem can now be described using the discretized operators. Dropping indices for
clarity, we obtain the problem

argmin{Cu=b}
1

2
‖u‖2S , (1.3)

This optimization problem reduces to the saddle point problem given byS C>

C 0

u
λ

 =

0

b

 , (1.4)

where λ is a Lagrange multiplier for the constraint Cu = b. Multiple methods exist to solve such
problems when the matrix S−1 cannot be formed directly. However, since we work with spectral

SEEM WITH CHEBYSHEV POLYNOMIALS 3

methods for which the matrix S−1 can be efficiently calculated using the FFT, we focus on two
direct methods.

1. Equation (1.4) is easily seen to be equivalent to its Schur complement formulation

u = S−1C>
(
CS−1C>

)−1
b. (1.5)

Using sparse representations of the matrices C, S−1, and C>, the Schur complement
matrix CS−1C> can be efficiently inverted using the preconditioned conjugate gradient
method (PCG). Of course, proper preconditioning of the Schur complement matrix will be
necessary. As this method does not require explicit computation of the matrices, it can be
used on very dense grids.

2. In the pseudoinverse method (1.4) is equivalent to yet another formulation and is given
by

u = S−1/2(CS−1/2)+b, (1.6)

where (CS−1/2)+ is the pseudoinverse of CS−1/2. The pseudoinverse can be efficiently and
stably calculated using a QR decomposition of the explicit matrix CS−1/2. The advantage
of using the pseudoinverse is that the condition number of the matrix CS−1/2 is the square
root of that of the full Schur complement matrix CS−1C>. Ill-conditioning is therefore less
of a problem and higher order norms can be used for regularization. In this way, greater
accuracy can be obtained, but, because dense matrices are involved, the method is limited
to coarser grids than are allowed in the Schur complement approach.

As the numerical experiments performed later will show, the SEEM method can be used to
efficiently achieve spectral accuracy for general boundary conditions. Its implementation, as we
shall see, is quite simple as it merely requires discretizing the BVP matrix C and the regularizing
matrix S on a regular, rectangular grid.

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Disc with Chebyshev Discretization

3 2 1 0 1 2 3

3

2

1

0

1

2

3
Disc with Fourier Discretization

Figure 1. Contrasting the discretization of a disc on the Fourier and Chebyshev grids.

1.2. Motivation for using Chebyshev polynomials. In [1], SEEM was implemented for Fourier
series on a periodic torus. Such an implementation was chosen because it allowed for the use of
the FFT, which made the discretizations straightforward and the computations efficient. While
the method was shown to be quite effective at solving BVPs, it suffered from two significant draw-
backs. First, because the generated smooth extension of the BVP is periodic, only a small fraction
of the periodic domain could be included in Ω. The rest was essentially needed as a buffer in
order to allow the extension to smoothly morph into a periodic function. This wasted significant

4 DANIEL AGRESS, PATRICK GUIDOTTI, AND DONG YAN

computational resources, because the extension was solved on a far larger grid than was necessary
for the solution of the BVP. Put differently, the ratio

|Ωm|
|Bm|

was much smaller than the geometry of Ω actually required. A second problem was that a 2π-
periodic extension of u had far larger optimization norm than u itself. The derivatives outside
Ω were required to be large to force the extension to be periodic. This negatively affected the
accuracy of the discretized solution. Table 1 below shows how, in the periodic setting, higher order
Sobolev norms of the extension grow even if the smoother used is chosen to control these higher
order norms, corresponding to the growth along the columns of the periodic section of the table.
Clearly a norm of the extension is expected to grow if the optimization norm used is of lower order,
explaining the growth along the rows of the table.

Chebyshev Extension Fourier Extension

Smoother ‖∇2u‖L2 ‖∇3u‖L2 ‖∇4u‖L2 ‖∇2u‖L2 ‖∇3u‖L2 ‖∇4u‖L2

S2 16.0956 14.5451 319.2180 95.4606 172.2919 488.2472

S3 16.0111 0.5137 2.3840 137.6518 177.6702 281.2872

S4 16.0002 .0064 .0410 153.0669 184.4029 278.7028

Table 1. Various norms of the extensions obtained by the optimization procedure
based on different smoothers.

Both of these problems can be remedied by using Chebyshev expansions instead of Fourier
series. Instead of working on the periodic torus [−π, π)d, one can work on the nonperiodic box
B = [−1, 1]d. Using Chebyshev polynomials discretized on the Chebyshev roots’ grid, functions can
still be approximated with spectral accuracy on B. At the same time, because the encompassing
domain does not require the periodicity of the extension, far more of the domain B can be included
in Ω. Additionally, for smooth, extendable u, the derivative norms of the extension will not be
significantly larger than those of u itself. Thus, as demonstrated in the numerical experiments,
equivalent accuracy can be achieved on far smaller grids, leading to faster computational times.
As calculations on the Chebyshev grid can also be carried out using the FFT, the method retains
the efficiency of SEEM based on Fourier series.

1.3. The Chebyshev smoother. The most significant difference between implementing SEEM
on a Chebyshev grid versus on a Fourier grid lies in the choice of regularizing norm used in Equation
(1.2). In the Fourier case, the norm

‖ · ‖Sp = ‖(1−∆π)p/2 · ‖L2

was used as a smoothing penalty. We note that this norm imposes Hp regularity on the solution,
leading, as described in [1], to a convergence rate of order p for the error. In addition, the operator
(1−∆π)−p/2 can be diagonalized by the Fourier transform and the operator S−1/2 takes the simple
form

(1−∆π)p/2u = F−1 ◦M
[
(1 + | • |2)−p/2

]
◦ Fu.

Here, M [f] denotes multiplication by the function f , where, depending on the occurrence, the
function f is either defined everywhere or on the discretization set. The symbol • is used in stead
of the independent variable of the function f and therefore stands for either x ∈ B or k ∈ Zd

SEEM WITH CHEBYSHEV POLYNOMIALS 5

depending on the context (continuous or discrete). The discretized operator S−1/2 in (1.6) is very
simply and efficiently computed using the FFT.

Motivated by this choice of smoother for the Fourier case and by the eigenvalue equation de-
scribed below in Section A.5, we choose a smoothing norm for the Chebyshev grid in an analogous
manner. As it is done in Section A.5, define the operator

D := M
[√

1− •2
]
◦ ∂

∂x
.

By means of Equation (A.5.1) we find that

(1−D2)p/2Tm = (1 +m2)p/2Tm

holds true for the m-th Chebyshev polynomial Tm. Exploiting this, we define the norm

‖ · ‖2Sp = ‖(1−
d∑
i=1

D2
i)
p/2 · ‖2L2

.

Clearly, away from the degeneracies at −1 and 1, this norm imposes Hp regularity on the function
u. In addition, due to the eigenvalue equation, the operator Sp is diagonalized by the Chebyshev
transform. In particular, if we denote the latter by C and let (k)k∈Nd be the (Chebyshev) frequency
vector, we have that

S−1/2
p u = C−1 ◦M

[
(1 + | • |2)−p/2

]
◦ Cu.

As described later in Section 2.2.3, this allows for simple and efficient numerical discretizations
based on the discrete Chebyshev transform as described in A.3. The numerical experiments of
Section 3 demonstrate that, as in the Fourier case, using the Sp norm leads to a p rate of convergence
for the error.

Remark 1.1. In the numerical experiments, the observed rate of convergence for the Sp smoother
is somewhat faster than the expected rate p, which was observed in the Fourier case. We suspect
that this may have to do with the higher density of points near the boundary of the domain Ω, due
to the non-regular spacing of the Chebyshev grid.

Remark 1.2. An alternative choice for the norm, which gives a spectral rate of convergence, is

‖ · ‖Sexp
= ‖C−1 ◦M

[
exp

|•|
2

]
◦ Cu‖L2

.

As motivation, notice that the operator S−1/2
exp = C−1 ◦M

[
exp−

|•|
2

]
◦ Cu is a pseudodifferential

operator of heat type. As with Sp, because the operator is diagonalized by the Chebyshev transform,
Sexp can be efficiently discretized and computed.

Remark 1.3. While spectral discretizations based on Chebyshev polynomials were chosen for this
paper, the proposed method can also be implemented with respect to any other spectral basis. It
is enough to embed Ω into a larger domain B for which a full spectral resolution is known for
some canonical self-adjoint and positive definite differential operator D with compact resolvent. If
the operator admits natural discretizations Bm for the domain B, {ψi}mi=1 for its (orthonormal)
eigenfunctions, which are also orthonormal for the appropriate discrete quadrature rule, and satisfy

Dmψmi = λ2
iψ

m
i ,

for the eigenvalues λ2
• of D, then a good smoothing norm is given by

‖ · ‖Sp = ‖C−1
m ◦M

[
(1 + λ2

•)
p/2
]
◦ Cm · ‖L2 ,

where Cm is the discrete transformation which computes the coefficients of the (discrete and finite)
eigenfunction expansion and λ2

• is the corresponding vector of eigenvalues. The Fourier approach
of [1] clearly fits in this category.

6 DANIEL AGRESS, PATRICK GUIDOTTI, AND DONG YAN

1.4. Relationship with the radial basis collocation method. Even though SEEM is an
example of a so-called embedding method, it can nicely be understood by means of the the so-
called radial basis collocation method (RBCM) framework. Surveys of the latter are found in [3]
and [4]. In its simplest implementation, RBCM seeks the solution u to the problem at hand as a
linear combination of (smooth) radial functions φ,

u =
∑
i

ciφ(x− xi),

where u is constrained to satisfy the equation with corresponding differential operator C at the
points xi. However, in RBCM’s theoretical framework, the function φ is recognized to more prop-
erly represent a smoothing kernel applied to a δ distribution. The smoothing kernel corresponds to
the S operator of our method, see [5]. In the most general form of the symmetric RBCM method,
described in [3, Chapter 9], the solution is given by

u = K ? C>
(
C(K ? C>)

)−1
b,

where K = K(x, y) is any symmetric and positive definite smoothing kernel. It is also recognized
that such kernels can often be represented as a multiplication operator in Fourier space, leading
to both practical and analytical insights for the method. Clearly, the operator S used in our
method fits in the general category of smoothing kernels. In fact, the smoothers Sp can be viewed
as an analog of the Matérn kernels, used in RBCM. The Matérn functions (see [4, Chapter 4])
have Fourier transform (1 + |ξ|2)−p/2, while the kernel Sp has Chebyshev transform (1 + |k|2)−p/2.
However, to the best of our knowledge, SEEM distinguishes itself from these other implementations
of the RBCM in two main aspects, one practical and one philosophical.

1. In collocation methods, the evaluations of the smoothing operator are carried out analyt-
ically, and the resulting analytic functions are evaluated at the collocation points. The
smoothing kernel itself, thought of as an operator on the encompassing domain Rd, is
not explicitly discretized. SEEM, in contrast, embeds the BVP into a finite domain with
a straightforward, regular discretization, e.g. [−1, 1]d in the Chebyshev case. The cho-
sen smoothing operators then have simple, discrete approximations on the encompassing
domain. Skipping the discretization of the smoother, as it is done in collocation meth-
ods, definitely has some advantages. In particular, the collocation points can be placed
arbitrarily close, and do not need to take the size of a grid discretization into account.
Furthermore, there is no need to perform unnecessary computations on grid points outside
of Ω. On the other hand, we believe that having an explicit discretization of the smoother
has significant benefits of its own. First, it removes the need for detailed analytic compu-
tations of the radial basis functions and their derivatives, and replaces them with a natural
multiplication operator in the frequency space of the discretized domain. In fact, for many
smoothing operators, a simple explicit representation of the basis functions may not even
exist. Second, it allows all computations to be done with a straightforward application
of the FFT; thus, the evaluation of the matrix requires O(n log n) as opposed to O(n2).
Finally, having an explicit representation of the smoother allows for the computation of
the matrix CS−1/2 as opposed to the full matrix CS−1C>. As described in Section 1.1,
the condition number of this matrix is the square root of that of the full matrix, which
significantly slows the onset of numerical inaccuracy due to ill-conditioning.

2. Philosophically, as an embedding method, SEEM looks for the optimal way to embed
the solution into an encompassing domain. Collocation methods, in contrast, look for
the optimal set of basis functions to place at the collocation points. While in certain
cases, the two formulations are equivalent, we believe that the optimization perspective
offers many benefits. Firstly, it may often provide natural smoothing operators, suited
to the encompassing domain, which might not be apparent at first glance. The norms

SEEM WITH CHEBYSHEV POLYNOMIALS 7

used in this paper certainly fit in this category. Secondly, the optimization viewpoint
allows for the choice of more complex norms which may not be accessible in a collocation
framework. For example, non-quadratic objective functionals could be considered. For
non-regular problems, weighted norms would be a natural choice. Finally, we note that
the optimization perspective is cited in [3, Chapter 6] as a mathematical justification for
the usefulness of the RBCM.

2. Method

We now detail the implementation of SEEM on the Chebyshev grid. As described in (1.4), the
method boils down to solving the saddle point problemS C>

C 0

u
λ

 =

0

b

 ,
either using the Schur complement or the pseudoinverse method. The matrix C =

[
A B

]>
represents a discretization of the BVP and S a discretization of the smoothing operator described
in Section 1.3. A description is provided next of how to generate the proper discretizations of C
and S−1/2 and of the solution method used to deal with the resulting linear system.

2.1. Discretization of the domain. We recall that the BVP is posed in Ω ⊆ [−1, 1]d. The
domain [−1, 1]d is discretized by a product set of the one-dimensional Chebyshev grid Cm, described
in Section A.1 and given by

Bm =

{
(x1, . . . , xd)

∣∣∣∣xi ∈ Cm for 1 ≤ i ≤ d
}
,

where

Cm =
{

cos

(
π

2k + 1

2m

) ∣∣ 0 ≤ k ≤ m− 1
}
.

The discretized interior of the domain is then given as Ωm = Ω∩Bm, containing Nm
Ω := |Ωm| points.

The boundary is discretized by choosing equally spaced points along the boundary Γ, yielding a set
Γm containing Nm

Γ := |Γm| points. We emphasize that these boundary points do not need to lie
on the regular grid, but rather lie on the actual boundary Γ. In two dimensions, the discretization
can be achieved by equally spacing points along an arclength parametrization of the boundary
curve. In three dimensions, it is not possible to get a perfectly even distribution of points along
a two-dimensional boundary surface. However, methods exist to obtain good approximations; see
[6] for an example of such an algorithm.

A slightly better boundary discretization, particularly well adapted to the density of the Cheby-
shev grid, can be obtained as follows. If the boundary Γ is a hypersurface contained in B and
parametrized by (

Γ1(z), . . . ,Γd(z)
)
, z ∈ Sd−1,

where Sd−1 is the d− 1-dimensional unit sphere, we can create an even distribution of points

{ỹ i}N
Γ
m

i=1 =
{

(ỹ i1, . . . , ỹ
i
d)
∣∣ i = 1, . . . , NΓ

m

}
along

Γ̃ :=
(

arccos(Γ1(z)), . . . , arccos(Γd(z))
)
,

now a hypersurface of [0, π)d. We note that applying the arccos function componentwise to the
points of Bm leaves one with a regular grid on [0, π)d; thus, setting

Γm =
{

(yi1, . . . , y
i
d)
}NΓ

m

i=1
=
{

(cos(ỹ i1), . . . , cos(ỹ id))
}NΓ

m

i=1

8 DANIEL AGRESS, PATRICK GUIDOTTI, AND DONG YAN

produces a boundary discretization of Γ the density of which is proportional to the density of the
Chebyshev points in B. In the two dimensional numerical experiments, this method was used to
discretize the boundary.

A choice is left as to the specific density of the points on the boundary. Increasing the number
of discretization points increases the accuracy. However, if the boundary points are more closely
spaced than the regular grid points, the regular grid will be unable to distinguish/resolve the
boundary points and the matrix will become severely ill-conditioned (or even singular). In our

numerical experiments, we have placed m
2 points per unit length in Γ̃ for two dimensional problems.

In three dimensions, we have used 4πm2 points per unit area on Γ. These densities seem to provide
a good balance of accuracy versus condition number.

Remark 2.1. The grid described above is frequently referred to as Chebyshev roots grid or Cheby-
shev points of the first kind. An alternative choice of grid could have been made with the Chebyshev
extrema grid, also known as Chebyshev points of the second kind. Similar rates of convergence are
observed with these points. However, in our numerical experiments, the roots grid appears to be
more numerically stable. Furthermore, the regularizer S−1

p described in Section 1.3 is only sym-
metric for the Chebyshev roots grid, which makes it more convenient for the use of iterative solvers.
Henceforth, the Chebyshev grid will refer to the Chebyshev roots grid.

2.2. Discretization of the differential operators. We recall that the boundary value problem
we are solving is of the form {

Au = f in Ω,

Bu = g on Γ.

As described in the Introduction, in SEEM, the entire BVP, both the interior operator A and
the boundary operator B, are used in a combined system of constraints complementary to an
optimization problem formulated on the encompassing domain B. This is done by requiring that
the discrete solution satisfy an equation corresponding to a discretization A of the operator A at
the points Ωm, the discretized interior differential equation, and to a discretization B of B at the
points of Γm, the discretized boundary condition. We now describe exactly how to construct these
discretizations in the setting of the Chebyshev grid.

2.2.1. Construction of A. The matrix A will be an (Nm
Ω ×md) matrix which uses values on the

entire grid Bm to approximate the operator A at the points of Ωm. For a general second order
elliptic BVP, the interior operator is of the form

Au = −aijuxixj + biuxi + cu.

To evaluate the derivatives, we use the discrete differentiation matrices Di for the Chebyshev grid
described in Section A.4. Here Di corresponds to differentiation along the xi direction. Similarly,
D2
ij corresponds to taking two derivatives, one in the xi and one in the xj direction, respectively.

Note that, in Section A.4, the differentiation matrices are given implicitly, as linear operators using
the discrete cosine and sine transforms DCT and DST. This is done to speed the calculations up
and to limit RAM usage, although explicit matrices can certainly be used as well. A restriction
operator R : RBm → RΩm

is also needed which acts by restricting a grid function u to its values
on Ωm. Its transpose, R> : RΩm → RBm

acts as extension by 0 from Ωm to Bm. For a function u
defined on Bm, the operator A is then defined as

A(u) = −aijR
(
D2
iju
)

+ biR (Diu) + cu.

For a function v defined on Ωm, A>, used in Section 2.3, is similarly given by

A>(v) = −D2
ijR
> (aijv) +DiR

> (biv) +R> (cv) .

SEEM WITH CHEBYSHEV POLYNOMIALS 9

Remark 2.2. While in this implementation, the matrix A enforces the (discrete) differential equa-
tion at the points of the Chebyshev grid, this is not strictly necessary. While the skeleton of the
method is the Chebyshev grid, the original equations can be imposed at any point of Ω ⊂ B, just like
it is done for the boundary conditions. Doing so simply requires the use of spectral interpolation
beside that of spectral differentiation.

2.2.2. Construction of B. The matrix B will be an (Nm
Γ ×md) matrix which uses values on the

entire grid Bm to approximate the operator B at the points of Γm. For the boundary conditions
considered in this paper (Dirichlet, Neumann, or Robin), the boundary operator is of the form

Bu = aγΓu+ bγΓ(∇u) · νΓ

for some smooth functions a and b defined on the boundary Γ. Here, γΓ is the trace operator and νΓ

is the unit outward pointing normal vector to Γ. Note that the choice a ≡ 1, b ≡ 0 corresponds to
Dirichlet boundary conditions, while a ≡ 0, b ≡ 1 corresponds to Neumann boundary conditions.
To evaluate the trace and the normal derivative on the boundary, we need to use the spectral
interpolation operators, δy and δy ◦ ∇, described in Section A.6. The vector δy is a spectral
discretization of the δ distribution located at y, while ∇ is the discretized gradient. The matrix B
is constructed by building each row independently. The i-th row of B corresponds to the evaluation
of the boundary condition at the i-th point yi of Γm. We therefore set

[B]i• = a(yi)δyi + b(yi)(δyi ◦ ∇) · νyi ,

where νyi is the normal vector to Γ at the point yi.

2.2.3. Construction of S−1. Recall from Section 1.3 that we utilize the smoothers

S−1
p = C−1 ◦M

[
(1 + | • |2)−p

]
◦ C.

The Chebyshev transform C is defined in Section A.3 and • = (k)k∈Nd is the Chebyshev frequency
vector on the d dimensional box B. Each of these can be discretized simply and efficiently using
the discrete Chebyshev transform Cm, also defined in Section A.3. When • = (k)k∈{0,...,m−1}d

is the discrete Chebyshev frequency vector on the d dimensional grid Bm, we define the discrete
smoothers as

S−1
p = C−1

m ◦M
[
(1 + | • |2)−p

]
◦ Cm.

2.3. Solution of the resulting system. After delineating how to implement the matrices A, B,
and S−1

p , we turn to solving the linear system. As described in Section 1, the solution u can be
obtained using either the Schur complement or the pseudoinverse methods. We now describe how
each of these yields an efficient calculation of the solution.

2.3.1. The Schur Complement Method. In the Schur complement method, the solution is obtained
by solving

u = S−1
p C>(CS−1

p C>)−1b.

As the matrix CS−1
p C> is symmetric, it can be inverted using the conjugate gradient method.

When the single matrices are generated via conjugation with the FFT, their application can be
performed inO(n log n) operations. Preconditioning is required, however, due to the large condition
number of the relevant matrix. In order to obtain a preconditioner, we consider the full matrix
CS−1

p C> as a block matrix, acting on the interior (Ωm) and boundary (Γm) components of b
separately.

CS−1
p C> =

 AS−1
p A> AS−1

p B>

BS−1
p A> BS−1

p B>

 .

10 DANIEL AGRESS, PATRICK GUIDOTTI, AND DONG YAN

The preconditioner P is then a block matrix

P =

 C−1
1 0

0 C−1
2

 ,

where C−1
1 is an approximate inverse for AS−1

p A> and C−1
2 is one for BS−1

p B>. Because the
number of boundary points grows slowly relative to the number of interior points, the matrix
BS−1

p B> remains small even on denser grids, and it can be computed explicitly and inverted

directly; thus, C−1
2 can just be taken to be (BS−1

p B>)−1. The (continuous) operator (discretized

by) AS−1
p A> is of order 2p − 4. Thus, a well conditioned operator of order 0 is obtained by

using (1 − D2
Ω)p−2 as a preconditioner. Here, D2

Ω is the operator
∑d
i=1D2

i restricted to Ω. Next
observe that the operator D2

Ω can be thought of as an application of the Laplacian on a uniform
grid after composition with the change of independent variables by arccos. In this way, a good
discretization of D2

Ω is achieved by using a finite difference discretization of the Laplacian on the
grid Ωm, considering the points of Ωm as if they were equally spaced. The numerical experiments
performed in Section 3 confirm that the solution can be efficiently produced using the PCG method
for smoothers Sp of order p up to 4, provided the preconditioning just described is applied.

2.3.2. The Pseudoinverse Method. In the pseudoinverse method, one needs to calculate (CS
−1/2
p)+.

While iterative methods are an option, in our experiments the pseudoinverse is calculated directly

by means of QR decomposition of the explicit matrix. Specifically, if S
−1/2
p C> = QR, then

(CS−1/2
p)+ = Q(R>)−1.

We have found that this delivers the most numerically stable method of calculating the pseudoin-
verse.

2.3.3. Comparison of the Two Methods. We briefly discuss the relative advantages of the two
methods described above. As it turns out, the pseudoinverse method is better for small grids,
which are a viable choice when studying very smooth problems. The Schur complement method
is the better choice for the dense grids needed to study less smooth problems. These conclusions
will also be supported by the numerical results of Section 3.

It is important to observe that the numerical computation of the matrix S−1
p is constrained by

numerical limitations. Indeed, the implementation of the operator as a multiplication in Fourier
space involves multiplication by (1 + •2)−p, which can only be accurately rendered if (1 + •2)−p is
larger than numerical precision. This results in a limitation on the density of the grid that can be
used with a given smoother Sp.

The Schur complement method, as an iterative method, has the advantage of requiring only
O(n log n) computations. This makes it suitable for use on dense grids. However, because it
requires the calculation of the matrix S−1

p , it limits the maximal order of the smoother which can
be employed. In practice, smoothers of order up to p = 5 can be utilized. As a consequence, the
rate of convergence of the numerical solution, which depends on the choice of p, will be limited.
This method is therefore effective for solutions of lower global regularity, where a high rate of
convergence is already limited by the lack of regularity of the solution itself and one needs to
resort to a dense grid.

The pseudoinverse method, in contrast, only requires the computation of the matrix S
−1/2
p .

Thus, the numerical limitations described above only kick in for smoothers of much higher order.
In particular, smoothers of order p ≤ 10 can be used. On the other hand, because the pseudoinverse
is computed explicitly, dense grids are out of reach. This makes the pseudoinverse method a good
choice for problems with smooth solutions where very high rates of convergence can be obtained.

SEEM WITH CHEBYSHEV POLYNOMIALS 11

The pseudoinverse method is used in Experiments 1 and 2, where the problems have an analytic
solution, and the Schur complement method in Experiments 3 and 4 where the solutions are of
lower regularity.

3. Numerical Experiments

We offer a series of numerical experiments to demonstrate the efficacy of the method. We will
include a Dirichlet and Robin boundary value problem with analytic solution; this will allow us
to demonstrate the high order convergence which our method can obtain. These problems will be
solved using the pseudoinverse method. We will then solve a Dirichlet problems with solutions of
global H4 and H6 regularity; here, the rate of convergence will necessarily be of lower order so
the Schur complement method will be used. Finally, we will solve a parabolic PDE with analytic
solution to demonstrate how the method can be used on a space-time fictitious domain as well.
The reported rates of convergence for each experiment are computed as the average of all the rates
of convergence observed going from one grid-size to the next.

In the following experiments, we will consider the following domains: a disc and a star-shaped
domain.

Ω1 = {(r, θ)
∣∣ r < .95}.

Ω2 = {(r, θ)
∣∣ r < .8(1 + .2 cos(θ))}.

.

The domains are shown in Figure 2.

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
1 - Disc

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
2 - Star Shaped Domain

Figure 2. Two different domains discretized on the Chebyshev grid considered
in the two-dimensional problems.

3.1. A two-dimensional Dirichlet problem. We consider the Dirichlet problem{
−∆u = −6x− 6y in Ω,

u = x3 + y3 on Γ.
(3.7)

on Ω, the disc of radius 0.95 shown in Figure 2. The exact solution is x3 +y3. We solve the problem
using the pseudoinverse method, with explicit matrices. The sizes of the different discretizations
considered, together with the L2 and L∞ errors, are listed in Table 2. A graph of the L2 and L∞
errors is found in Figure 3. We note that because we are using explicit matrices and small grids,
the CPU times are less than a second.

12 DANIEL AGRESS, PATRICK GUIDOTTI, AND DONG YAN

|Bm| Nm
Ω Nm

Γ

L2 Error

S2 S4 S6 S8 S10 S12

82 = 64 24 5 2.81E-01 4.80E-01 9.38E-01 1.41E+00 1.68E+00 1.80E+00

122 = 144 60 8 9.66E-02 5.94E-02 2.74E-02 9.43E-03 2.68E-03 6.23E-04

162 = 256 104 10 4.30E-02 2.60E-02 1.15E-02 3.86E-03 1.09E-03 2.54E-04

202 = 400 164 12 1.87E-02 3.85E-03 6.54E-04 7.48E-05 7.61E-06 6.92E-07

242 = 576 240 15 7.42E-03 5.97E-04 7.44E-05 4.54E-06 2.46E-07 1.36E-08

282 = 784 324 17 5.38E-03 3.94E-04 4.85E-05 2.83E-06 1.33E-07 5.73E-09

322 = 1024 408 19 3.78E-03 1.41E-04 1.09E-05 4.32E-07 1.46E-08 4.55E-10

362 = 1296 520 22 2.25E-03 3.75E-05 1.63E-06 6.22E-08 1.12E-09 2.57E-11

Rate of Convergence: 3.21 6.29 8.82 11.26 14.05 16.60

Table 2. L2 errors for Equation 3.7.

8 12 16 20 24 28 32 36
Grid Size

10 10

10 8

10 6

10 4

10 2

100

L 2
 E

rro
r

L2 Error

S1
S2
S3
S4
S5
S6

8 12 16 20 24 28 32 36
Grid Size

10 9

10 7

10 5

10 3

10 1

101

L
 E

rro
r

L Error

S1
S2
S3
S4
S5
S6

Figure 3. Convergence of the L2 error and L∞ errors for Equation (3.7).

3.2. A two-dimensional Robin problem. Next consider the star shaped domain

Ω = {(r, θ)
∣∣ r < .8(1 + .2(cos(5θ))},

shown in Figure 2. Consider the Robin boundary value problem{
−∆u = 0 in Ω,

u+ ∂u
∂ν = (x2 − y2) + 〈2x,−2y〉 · ν on Γ,

(3.8)

where ν is the outward pointing unit normal vector to Γ. In this case the exact solution is given
by u(x, y) = x2 − y2. The numerical results are summarized in Table 3 and Figure 4. We include
this example to demonstrate that the method works across different boundary value problems and
domain shapes.

SEEM WITH CHEBYSHEV POLYNOMIALS 13

|Bm| Nm
Ω Nm

Γ

L2 Error

S2 S4 S6 S8 S10 S12

62 = 36 10 4 4.74E-01 1.02E-01 3.41E-02 1.14E-02 1.62E-02 4.43E-02

102 = 100 28 7 4.56E-01 6.46E-02 8.37E-03 1.04E-03 9.84E-05 8.23E-06

142 = 196 50 9 3.01E-01 4.40E-03 4.97E-04 4.22E-05 2.96E-06 1.78E-07

182 = 324 86 12 2.56E-01 2.75E-03 8.38E-05 2.57E-06 6.55E-08 1.44E-09

222 = 484 134 14 1.32E-01 5.03E-04 2.27E-06 8.94E-08 1.58E-09 2.41E-11

282 = 784 204 18 2.05E-01 4.14E-04 2.22E-06 1.21E-08 9.66E-11 6.13E-12

342 = 1156 308 21 8.06E-02 5.15E-05 5.29E-07 2.84E-09 1.62E-11 3.53E-12

402 = 1600 424 25 9.24E-02 2.90E-05 4.70E-08 3.21E-11 1.17E-12 1.86E-11

Rate of Convergence: 0.86 4.30 7.11 10.38 12.31 11.38

Table 3. L2 errors for Equation 3.8.

6 10 14 18 22 28 34 40
Grid Size

10 11

10 9

10 7

10 5

10 3

10 1

L 2
 E

rro
r

L2 Error

S1
S2
S3
S4
S5
S6

6 10 14 18 22 28 34 40
Grid Size

10 11

10 9

10 7

10 5

10 3

10 1

L
 E

rro
r

L Error

S1
S2
S3
S4
S5
S6

Figure 4. Convergence of the L2 error and L∞ errors for Equation (3.8).

The above experiments show that very high order methods come at the expense of very high
condition numbers of the matrices in the discretized system and push against the intrinsic machine
precision limitations in the numerical representation of the regularizers. These facts explain the
stagnation observed for higher regularizers in the above examples. In Figure 5, we provide a plot
of the condition numbers for these examples.

14 DANIEL AGRESS, PATRICK GUIDOTTI, AND DONG YAN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
H6 Function

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
H4 Function

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1.44

1.20

0.96

0.72

0.48

0.24

0.00

Figure 6. Functions of lower global regularity used in Sections 3.3 and 3.4.

8 12 16 20 24 28 32 36
Grid Size

102

104

106

108

1010

1012

1014

1016

Co
nd

iti
on

 N
um

be
r

Condition Number
S1
S2
S3
S4
S5
S6

6 10 14 18 22 28 34 40
Grid Size

102

104

106

108

1010

1012

1014

1016

Co
nd

iti
on

 N
um

be
r

Condition Number
S1
S2
S3
S4
S5
S6

Figure 5. Condition numbers for experiments (3.7) and (3.8).

3.3. A problem with H6 solution. The problem is generated by considering a Chebyshev series
with random coefficients which satisfy a decay rate |ak| ≤ (1 + |k|2)−3; the function is shown in
Figure 6. We solve a Dirichlet problem where the chosen function is restricted to the disc of radius
.95. Because the solution is globally H6, the solution cannot converge at a rate larger than 4, i.e.
the error cannot decay faster than O(m−4). Thus, in this case, the solution must be computed
on denser grids using the Schur complement method. We show the rates of convergence below
in Figure 7 and Table 4. We also record the number of PCG iterations to convergence and CPU
times in Table 5.

SEEM WITH CHEBYSHEV POLYNOMIALS 15

|Bm| Nm
Ω Nm

Γ

L2 Error

S2 S3 S4

162 = 256 104 10 1.32E-03 2.44E-04 3.14E-04

322 = 1024 408 19 2.81E-04 1.39E-05 6.52E-06

642 = 4096 1660 38 3.37E-05 9.81E-07 1.47E-07

1282 = 16384 6656 75 4.93E-06 5.59E-08 3.25E-09

2562 = 65536 26656 150 8.96E-07 4.49E-09 1.61E-09

Rate of Convergence: 2.63 3.93 4.39

Table 4. Convergence of L2 error for H6 function.

|Bm|
PCG Iterations CPU Times

S2 S3 S4 S2 S3 S4

162 = 256 36 26 37 0.05 0.03 0.05

322 = 1024 60 41 60 0.1 0.06 0.11

642 = 4096 94 67 106 0.37 0.2 0.33

1282 = 16384 122 97 173 1.11 0.94 1.64

2562 = 65536 149 118 328 7.26 5.41 14.9

Table 5. PCG Iterations and CPU times for H6 function.

16 32 64 128 256
Grid Size

10 9

10 8

10 7

10 6

10 5

10 4

10 3

L 2
 E

rro
r

L2 Error

S2
S3
S4

16 32 64 128 256
Grid Size

10 8

10 7

10 6

10 5

10 4

10 3

L
 E

rro
r

L Error

S2
S3
S4

Figure 7. Convergence of the L2 and L∞ errors for the H6 solution.

16 DANIEL AGRESS, PATRICK GUIDOTTI, AND DONG YAN

3.4. A problem with H4 solution. We use a Chebyshev series with random coefficients which
satisfy a decay rate |ak| ≤ (1 + |k|2)−2. Again, we solve a Dirichlet problem on the disc of radius
.95. Because the solution is globally H4, the solution cannot converge at a rate larger than 2.
Thus, in this case, the solution must be computed on denser grids using the Schur complement
method. We show the rates of convergence below in Figure 8 and Table 6. We note that all three
smoothers have the same rate of convergence due to the limited regularity of the solution.

|Bm| Nm
Ω Nm

Γ

L2 Error

S2 S3 S4

162 = 256 104 10 4.40E-03 2.38E-03 2.03E-03

322 = 1024 408 19 6.05E-04 4.34E-04 4.46E-04

642 = 4096 1660 38 1.14E-04 1.04E-04 1.02E-04

1282 = 16384 6656 75 1.71E-05 1.43E-05 1.43E-05

2562 = 65536 26656 150 4.59E-06 4.26E-06 3.79E-06

Rate of Convergence: 2.48 2.28 2.27

Table 6. Convergence of L2 error for H4 function.

|Bm|
PCG Iterations CPU Times

S2 S3 S4 S2 S3 S4

162 = 256 35 28 44 0.05 0.04 0.05

322 = 1024 60 44 68 0.09 0.07 0.12

642 = 4096 90 69 125 0.24 0.24 0.37

1282 = 16384 121 100 205 1.04 0.93 1.91

2562 = 65536 144 125 436 6.4 5.01 19.5

Table 7. PCG Iterations and CPU times for H4 function.

SEEM WITH CHEBYSHEV POLYNOMIALS 17

16 32 64 128 256
Grid Size

10 5

10 4

10 3

L 2
 E

rro
r

L2 Error

S2
S3
S4

16 32 64 128 256
Grid Size

10 5

10 4

10 3

10 2

L
 E

rro
r

L Error

S2
S3
S4

Figure 8. Convergence of the L2 and L∞ errors for the H4 solution.

3.5. A parabolic problem. Finally we describe a procedure to solve a time dependent problem
using SEEM. This example is considered to show both that SEEM is effective for a wide variety
of PDEs and to show that it is effective in three dimensions. Since we are calculating the solution
across a spacetime cylinder (and not marching in time), the problem is effectively a three dimen-
sional problem. We consider the parabolic cylinder Ω× [0, 2], where Ω is the star-shaped domain
shown in Figure 2. Define j0 to be the 0-th Bessel function of the first kind. Letting r denote the
Euclidean distance from 0, consider the radial function

u(t, r) = e−tj0(r)− e− t
4 j0

(r
2

)
.

The function u then satisfies the parabolic BVP
ut −∆u = 0 in (0, 2]× Ω,

u(0, ·) = j0 − j0(·2) in Ω,

u(t, ·) = e−tj0 − e−
t
4 j0(·2) on Γ for t ∈ (0, 2].

(3.9)

To discretize the domain, we use the Chebyshev grid Bm described in Section A.1. As for the time
interval [0, 2], we use a (shifted) Chebyshev extrema grid,

BnE = {tj}nj=0, where tj = − cos
(πj
n

)
+ 1.

In this section n = 10 is chosen in all of the experiments. The full discretization of the parabolic
cylinder [−1, 1]2× [0, 2] is then given by Bm×BnE . The choice to use the extrema grid rather than
the standard Chebyshev (roots) grid in the time variable was made because imposing the boundary
condition at t = 0 is slightly more straightforward, since the boundary point t = 0 lies on the grid.
For a description of how to construct the time differentiation matrix, Dt, we refer to [7].

With the discretization Bm × BnE , the interior of the parabolic cylinder is given by Ωm × B̃nE ,
where

B̃nE =
{
ti ∈ BnE

∣∣ ti > 0
}
.

The discretized “bottom” boundary of the cylinder is given by Ωm×{0}, whereas the discretization

of the lateral boundary Γ× (0, 2] is simply given by Γm× B̃nE . Letting RKm denote the evaluation

18 DANIEL AGRESS, PATRICK GUIDOTTI, AND DONG YAN

operator on the discrete set Km, we can define the matrices

A = RΩm×B̃n
E
◦ (Dt −D2

x1
−D2

x2
),

B1 = RΩm×{0},

B2 = RΓm×B̃n
E
.

Notice that evaluation of a function on the above sets simply amounts to their restriction to the

sets since Ωm × B̃nE and Ωm × {0} are sets of regular grid points. However, because Γm does not
contain regular grid points in general, the evaluation matrix RΓm×B̃n

E
will require the use of the

interpolation operators described in Sections 2.2 and A.6. If b1 and b2 represent the evaluations of

the function e−tj0 − e−
t
4 j0

(
·
2

)
at the points of Ωm × {0} and Γm × B̃nE , respectively, the BVP is

fully discretized by the matrix equation Cu = b where

C =
[
A B1 B2

]>
and b =

[
0 b1 b2

]>
,

and, by an abuse of notation, u = um, is the discrete unknown. As for the elliptic SEEM, the
problem is converted to a constrained optimization problem

argmin{Cu=b}
1

2
‖u‖2S ,

where ‖ · ‖S is a smoothing norm. In the parabolic case, ‖ · ‖S needs to be a space-time norm over
Bm × BnE . We recall from Section 1.3 and A.5 the operator

(Dm)2 = C−1
m ◦M

[
| • |2

]
◦ Cm.

The operators Dmi and Dmt represent applying the operator in the xi and t directions, respectively.
Motivated by our choice of smoothing norm used in the elliptic case and described in Section 1.3,
the norm given by

‖u‖Sp =
∥∥∥(1−

2∑
i=1

(Dmi)2 − (Dmt)2
)p/2

(u)
∥∥∥,

is used in order to enforce space-time regularity of the numerical solution. As with the norms
described in the elliptic case, this norm has the benefit of simple implementation using the discrete
Chebyshev transform. We remark that while this norm is clearly effective, as demonstrated by
our numerical experiments, it is not natural from the point of view of parabolic PDEs and may
not be the optimal one to use; we are continuing to investigate the best choice of smoother in the
parabolic case.
As in the elliptic case, the problem then reduces to finding

u = S−1/2
p (CS−1/2

p)+f.

The solution is obtained using a QR decomposition of S
−1/2
p C>, as described in Section 2.3. The

numerical results for the initial boundary value problem are summarized in Table 8 and Figure 9.

SEEM WITH CHEBYSHEV POLYNOMIALS 19

∣∣Bm × BnE
∣∣ ∣∣Ω× B̃nE

∣∣ ∣∣Ωn × {0}∣∣ ∣∣Γn × B̃nE
∣∣ L2 Error

S2 S4 S6 S8 S10

102 × 11 = 1100 280 28 130 5.30E-04 1.77E-05 3.69E-06 6.91E-07 2.48E-07

122 × 11 = 1584 400 40 150 6.65E-04 1.84E-05 3.86E-06 7.72E-07 4.92E-07

142 × 11 = 2156 500 50 180 3.63E-04 5.56E-06 6.95E-07 5.36E-08 2.51E-08

162 × 11 = 2816 720 72 200 3.21E-04 3.17E-06 2.85E-07 1.91E-08 4.50E-09

182 × 11 = 3564 860 86 230 1.70E-04 1.39E-06 9.84E-08 3.53E-09 2.23E-09

202 × 11 = 4400 1060 106 250 2.23E-04 1.81E-06 1.09E-07 3.34E-09 1.12E-09

222 × 11 = 5324 1340 134 280 1.46E-04 7.44E-07 3.61E-08 9.19E-10 2.71E-10

242 × 11 = 6336 1540 154 300 1.02E-04 3.78E-07 1.20E-08 4.36E-10 1.23E-10

Rate of Convergence: 1.88 4.39 6.54 8.42 8.69

Table 8. Grid sizes and L2 errors for Equation (3.9).

10 12 14 16 18 20 22 24
Grid Size

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

L 2
 E

rro
r

L2 Error

S1
S2
S3
S4
S5

10 12 14 16 18 20 22 24
Grid Size

10 9

10 8

10 7

10 6

10 5

10 4

10 3

L
 E

rro
r

L Error

S1
S2
S3
S4
S5

Figure 9. Convergence of the L2 and L∞ errors for different values of p when
solving Equation (3.9).

References

[1] D Agress and P Guidotti. The smooth extension embedding method. SIAM Journal of Scientific Computing,
43(1):A446–A471, 2021.

[2] R Glowinski, TW Pan, and J Periaux. A fictitious domain method for Dirichlet problem and applications.
Computer Methods in Applied Mechanics and Engineering, 111(3-4):283–303, 1994.

[3] GE Fasshauer. Meshfree methods. Handbook of theoretical and computational nanotechnology, 27:33–97, 2005.
[4] GE Fasshauer. Meshfree approximation methods with MATLAB, volume 6. World Scientific, 2007.
[5] R Schaback. Kernel-based meshless methods. Lecture Notes for Taught Course in Approximation Theory. Georg-

August-Universität Göttingen, 2007.

[6] Richard Palais, Bob Palais, and Hermann Karcher. Pointclouds: Distributing points uniformly on a surface.
arXiv preprint arXiv:1611.04690, 2016.

20 DANIEL AGRESS, PATRICK GUIDOTTI, AND DONG YAN

[7] LN Trefethen. Spectral methods in MATLAB, volume 10. Siam, 2000.

[8] JP Berrut and LN Trefethen. Barycentric Lagrange interpolation. SIAM review, 46(3):501–517, 2004.

Appendix A. The Chebyshev Polynomials

Setting B = [−1, 1], the Chebyshev polynomials of the first kind are given by

Tm(x) = cos
(
m arccos(x)

)
, x ∈ B, m ∈ N.

We briefly describe some relevant properties of the Chebyshev polynomials used in the body of the
paper. We refer to [7] for a more detailed discussion.

A.1. The Chebyshev roots. For fixed m ∈ N, the m roots of Tm(x) are given by

xk = cos
(
π

2k − 1

2m

)
, 0 ≤ k ≤ m− 1.

The Chebyshev grid comprising all roots of Tm, given by {xk | k = 0, . . . ,m−1}, is well adapted to
the spectral calculation of derivatives. In higher dimensions, a tensor product of one-dimensional
Chebyshev grids can be used. Throughout the body of the paper, Bm has been used to denote the
Chebyshev grid of the appropriate dimension.

A.2. Orthogonality relations. The sequence (Tm)m∈N forms an orthogonal basis for L2(B) with
respect to the measure dx√

1−x2
. More specifically, for i, j ∈ N,

∫ 1

−1

Ti(x)Tj(x)
dx√

1− x2
=

0, if i 6= j,

π, if i = j = 0,

π/2, if i = j 6= 0.

The Chebyshev functions restricted to Bm also satisfy a discrete orthogonality relation. Indeed,
for 0 ≤ i, j ≤ m− 1, one has that

m−1∑
k=0

Ti(xk)Tj(xk) =

0, if i 6= j,

m, if i = j = 0,
m
2 , if i = j 6= 0.

A.3. The Chebyshev transform. Because (Tm)m∈N forms an orthogonal basis of L2(B), any
function u ∈ L2(B) can be developed in a “Chebyshev series”. We set

ck =
pk
π

∫ 1

−1

u(x)Tk(x)
dx√

1− x2
, where pk =

{
1, if k = 0,

2, if k 6= 0.

so that

u(x) =

∞∑
m=0

ckTk(x).

It is also possible to define the Chebyshev transform, denoted by C, which maps a function to the
sequence of its Chebyshev coefficients.

C(u) = (ck)k∈N.

The discrete orthogonality relation also yields a discrete version of a Chebyshev expansion. Given
u : Bm → R, let

ck =
pk
m

m−1∑
i=0

uiTk(xi) for pk =

{
1, if k = 0,

2, if k 6= 0.

SEEM WITH CHEBYSHEV POLYNOMIALS 21

Then u can be written as a discrete Chebyshev series

u• =

m−1∑
k=0

ckTk(x•).

As in the continuous case, we can define the discrete Chebyshev transform Cm, which maps u to
its discrete Chebyshev series, i.e., we set

Cm(u) = (ck)k=0,...,m−1 =: c.

Both Cm and its inverse C−1
m can be implemented efficiently using an FFT algorithm, in the form

of the discrete cosine transform, more specifically,

Cm(u)k = akDCT(u)k for ak =

{
1

2m , if k = 0,
1
m , if k > 0,

and

Cm
−1(c) = IDCT(c̃) for c̃k =

{
ck, if k = 0,

ck/2, if k > 0.

In dimension larger than one, C and Cm will denote the continuous and discrete one-variable
Chebyshev transforms applied successively in each direction. Numerically, this can be accomplished
with the use of DCTN, where the factors ak and bk are raised to the power of the dimension.

A.4. Derivative formulæ. Discrete derivatives can be efficiently evaluated on the Chebyshev
grid using the DCT and DST. We denote by • the discrete frequency vector (k)k∈{0,...,m−1} or
the continuous variable x depending on the context, and let M [f] represent multiplication by the
discrete function f . We also define a shifting operator R with

Rij = δi+1,j ,

so that R is the matrix with ones on the superdiagonal. Then, given a function u = (ui)i∈{0,...,m−1}
defined on the Chebyshev grid Bm, a spectrally accurate discrete derivative Du can be calculated
using the matrix given by

D = M
[1√

1− •2
]
◦ IDST ◦ R ◦M

[•
2m

]
◦ DCT.

Similarly, we can compute

D2 = M
[−1

1− •2
]
◦ IDCT ◦M

[
− •

2

2m

]
◦ DCT +M

[•
(1− •2)3/2

]
◦ IDST ◦ R ◦M

[
− •

2m

]
◦ DCT.

Of course, a corresponding operator can be formed in higher dimensions, where the DCT, DST as
well as the frequency vector • are taken along the desired direction of differentiation. In the body
of the paper, the derivative operator in the xi direction is denoted as Di.

A.5. Eigenvalue equation. Setting D = M
[√

1− x2
•
]
◦ ∂
∂x , the Chebyshev polynomials satisfy

the eigenvalue equation

−D2Tm = m2Tm. (A.5.1)

Similarly, given the Chebyshev grid Bm, the discrete Chebyshev functions Tj(x•) satisfy a discrete

eigenvalue equation. Defining Dm = M
[√

1− x2
•
]
◦D, Tj(x•) satisfies

−D2
mTj(x•) = j2Tj(x•), j ∈ {0, . . . ,m− 1}.

This implies that

(1−D2
m)−p/2 = C−1

m ◦M
[
(1 + | • |2)−p/2

]
◦ Cm.

22 DANIEL AGRESS, PATRICK GUIDOTTI, AND DONG YAN

A.6. Interpolation operators. Functions defined on the Chebyshev grid can be interpolated at
arbitrary points in B. Such interpolation can be stably computed by means of the barycentric
interpolation formulæ described in [8]. Define first the vector w by

wk = (−1)k sin
(2k − 1

2m

)
, 0 ≤ k ≤ m− 1.

If y ∈ B and (xi)i∈{0,...,m−1} is the vector of points in Bm, a spectrally accurate interpolation of a
discrete function u defined on the Chebyshev grid Bm can be obtained by

u(y) = δy · u where (δy)i =
1∑m−1

k=0
wk

y−xk

wi
y − xi

.

To calculate the interpolation of the first derivative, which will be used in the Neumann problem,
we use the derivative of the above formula,

Du(y) = δy ◦D where (δy ◦D)i = − 1∑m−1
k=0

wk

y−xk

wi
(y − xi)2

+

∑m−1
k=0

wk

(y−xk)2(∑m−1
k=0

wk

y−xk

)2

wi
y − xi

.

To interpolate in several dimensions, we use a tensor product of the given interpolants, which are
denoted by δy and (δy · ∇). To calculate a directional derivative of the grid function u in the
direction ν at the point y, we use (δy ◦ ∇u) · νy.

University of California, Irvine, Department of Mathematics, 340 Rowland Hall, Irvine, CA 92697-

3875, USA
Email address: dagress@uci.edu and gpatrick@math.uci.edu and dyan6@uci.edu

